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Research Paper
Analyzing the Model Performances of Dot 
Hemorrhage Pattern Recognition Using Deep Neural 
Networks

Background: Diabetic retinopathy (DR) is a leading cause of blindness, and DR progression can 
be avoided by early dot hemorrhage (DH) detection.  Manual diagnosis is frequently subjective 
and time-consuming, which emphasizes the necessity for automated methods.

Methods: Using machine learning (ML) and artificial intelligence (AI), this study suggests an 
automated DH detection system. After preprocessing retinal fundus images with contrast limited 
adaptive histogram equalization (CLAHE), a modified VGG-16 convolutional neural network 
(CNN) was used to extract features. Support vector machine (SVM), random forest (RF), and 
linear regression (LR) models were used to classify both local and global features. 

Results: The proposed approach is highly effective in detecting and classifying DH associated 
with DR. When tested on the APTOS dataset, the model obtained an overall accuracy of 93.26% 
for DH identification and classification. This shows that the CNN is extremely effective in 
learning the distinguishing characteristics of hemorrhagic lesions from retinal fundus images. To 
confirm the suggested approach’s efficiency, comparative research was carried out using three 
traditional ML algorithms: RF, SVM, and LR. Among them, the RF classifier had the greatest 
accuracy of 92.4%, surpassing both SVM and LR. 

Conclusion: The research introduces a VGG16-based CNN that detects retinal hemorrhages 
in the APTOS dataset with an accuracy of 93.26%. Experimental results show that the Leaky 
ReLU activation function improves image classification performance, whereas the Adam and 
Adadelta optimizers consistently improve CNN-based learning. Finally, the research showed that 
deep learning-driven dynamic image analysis is a reliable and effective method for automated 
identification and categorization of DH, paving the way for early and accurate DR screening 
systems.

Keywords: Dot hemorrhages (DH), Convolutional neural networks (CNN), Deep learning 
(DL), Machine learning (ML), Contrast limited adaptive histogram equalization (CLAHE)
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Introduction

iabetes is a prevalent and serious chronic 
disease with long-term consequences. It 
occurs when blood sugar or glucose lev-
els become too high. Insulin is a hormone 
that transports blood glucose into bodily 

cells.  Diabetes occurs when the pancreas fails to produce 
enough insulin or the body cannot use it properly. Ex-
cess hyperglycemia in the bloodstream can harm several 
physiological systems. Diabetes can cause both macro-
vascular (big blood vessels) and microvascular (small 
blood vessels) complications, including retinopathy, 
nephropathy, neuropathy, heart attacks, strokes, and in-
adequate blood supply to the legs. Diabetic retinopathy 
(DR) is the abnormal development of blood vessels in 
the retina caused by diabetes, leading to vitreous hem-
orrhages. DR can cause deformities, such as microaneu-
rysms, hemorrhages, and hard and soft exudates (cotton 
wool patches). The global diabetes overview for 2023 in-
dicates a diabetic population of 537 million International 
Diabetes Federation (IDF), with a predicted increase 
to 783 million by 2045. Additionally, there are annual 
deaths of 1.5 million World Health Organization (WHO).

The main objective of this work was to develop an auto-
mated approach for DR detection. We aimed at develop-
ing a deep learning (DL) approach for correctly detecting 
and classifying DR existence and severity levels. DR af-
fects one-third of all diabetic people. An accurate diagno-
sis at an early stage can lessen the risk of vision loss. The 
current approaches are effective but require substantial 
resources. Advancements in AI assist in the diagnostic 
process by enabling automated image analysis to help 
specialists detect early indicators of DR. All individuals 
with diabetes should have their eyes checked at least once 
a year. The proposed research aims to investigate chang-
es in the ocular vascular system as diabetes progresses, 
utilizing computational vision, machine learning (ML), 
convolutional neural networks (CNN), and other DL ap-
proaches to screen for detection and classification of DR. 
When used in clinical diagnostic settings, this technology 
can save time and provide accurate results more efficient-
ly, benefiting both patients and medical practitioners. 

Literature survey

For DR classification, an ANN classifier employing 
Bayesian regularization and resilient backpropagation 
techniques yields the best results in terms of sensitivity 
and precision [1]. CNN is used for feature extraction, 
selection, and classification. The automatic screening 
method created by Gharaibeh et al. yielded a 98.4% ac-

curacy rate in DR classification following a series of ear-
lier processing techniques. Entropy images are created 
from retinal images in order to improve categorization. 
The intricacy of the original fundus images can be de-
termined by quantifying the image information. Using 
DL for categorization increases accuracy from 81.8% to 
86.0% when standard fundus images are employed [2]. 

Automatic DR identification using CNN, ResNet50, 
and InceptionV3 achieved a noteworthy 96.18% accu-
racy over 80 epochs [3]. For DR classification, VGG-19, 
a visual geometry group network (VGG Net), employs 
preprocessing tasks. This classification technique seg-
ments regions using a Gaussian mixture and selects fea-
tures using singular value decomposition. With a 98.34% 
accuracy in DL-based segmentation, feature extraction, 
feature selection, and classification, the proposed model 
is reported to produce superior outcomes [4]. In a differ-
ent experiment, Zhang et al. used ensemble learning and 
transfer learning in the DL model to categorize DR im-
ages. Following pre-processing techniques, like image 
normalization and histogram equalization, data augmen-
tation is used. The model achieved an average accuracy 
of 96.50% [5]. Shanthi  et al. used an AlexNet CNN as a 
pre-processing technique for classification of DR in fun-
dus imaged based on green channel extraction [6]. 

The Synergic DL approach proposed by Kathiresan 
et al. produced accurate classifications of DR in fundus 
images. When preprocessing and segmentation are per-
formed prior to classification, the DL model outperforms 
many other models currently in use [7]. Gayathri et al. 
identified DR using multiple ML classifiers and achieved 
remarkably good results after using CNN to extract the 
features from a unique study. In this experiment, the 
CNN proves to be an excellent classifier when multiple 
classifiers are integrated [8]. In a different experiment, 
a multi-scale shallow CNN is merged. Each CNN acts 
as a fundamental learner, facilitating feature extraction 
from various vision-related perceptual domains, and the 
integration of the networks is used to establish the final 
classification. It is evident that this integrated approach 
performs better than other state-of-the-art models. When 
additional image enhancement techniques, like unsharp 
masking (UM) and histogram equalization are applied, 
the model performs better [9]. In the study by Pao et al. 
UM is used to evaluate the fundus image preprocessing 
and the Gray level fundus image entropy. Using both im-
age types for categorization in a bi-channel CNN yields 
better results [10]. In order to classify an image, it must 
be selected from a predefined set of categories, for which 
numerous techniques have been developed.  

D
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ML is a technology that is frequently used in many 
different fields. ML techniques are applied to fundus 
images in order to classify DR. A three-stage classifica-
tion technique is used to distinguish between DR and 
non-DR images. AdaBoost, K-nearest neighbor (KNN), 
SVM, and gaussian mixture model (GMM) are ML ap-
proaches that manage the three steps of DR processing: 
Segmentation, lesion categorization, and severity rat-
ing. KNN and GMM have been found to perform well 
in classification [11]. By classifying DR using the Mes-
sidor and DBret datasets, SVM and KNN are used to 
identify retinal microaneurysms, with SVM performing 
better than KNN [12]. In terms of DR prediction, SVM 
outperforms decision trees and logistic regression [13]. 
After pre-processing and segmentation, SVM is used to 
classify DR into three classes: Normal, mild, and severe 
[14]. The Naive Bayes classifier outperforms SVM in 
a comparison of two ML techniques for classifying DR 
instances [15]. The author proposed how deep learning 
models can enhance diagnostic accuracy by automati-
cally identifying relevant features in medical imaging 
data. Compared with various CNN models, VGG-16 
outperforms others in detecting the presence of stroke 
types with higher accuracy [16]. For image classifica-
tion, three models, like SVM, KNN, and XGBoost are 
used and SVM outperforms the other two [17]. DR is 
detected in retinal images using multilayer perceptron 
neural networks [18]. Optimal path forest (OPF) and re-
stricted boltzmann machines (RBM) models were used 
to classify retinal images according to the presence or 
absence of disease-related retinopathy.  

For the binary and multiclass categorization of DR, 
Gayathri et al. proposed an automated methodology 
[19]. The anisotropic dual-tree complex wavelet trans-
form (ADTCWT) was used to extract features from 
retinal fundus images.  Mujeeb Rahman et al. demon-
strated an automated DR screening method utilizing ML 
techniques [20]. In medical image classification tasks, 
deep learning models, particularly CNNs, have shown 
impressive accuracy. Diagnostic performance is further 
improved by transfer learning with pre-trained architec-
tures, such as VGG and ResNet.  In order to improve 
model generalization, recent developments further high-
light the significance of pre-processing methods and data 
augmentation [21]. The two methods that were employed 
were DNN and SVM.  The three primary procedures that 
were emphasized in the study were image segmentation, 
feature extraction, and classification. The combined 
ML architecture developed by Narayanan et al. aims 
to diagnose and grade DR. [22]. This effort proposes a 
theoretical framework to assist doctors in diagnosing pa-
tients with brain strokes, utilizing image segmentation to 

identify brain strokes [23]. The author proposed that ar-
tificial intelligence and image processing can be used to 
detect and classify early-stage DR, allowing for prompt 
diagnosis by identifying minute retinal anomalies. This 
method enables effective screening in clinical settings, 
improves accuracy, and lowers manual errors [24]. Us-
ing vascular characteristics as important biomarkers for 
disease detection, this study proposes a DL pipeline for 
categorizing retinal vessels to aid in the early prediction 
of DR and retinal pigmentosa [25]. In order to improve 
the early detection of retinal dot hemorrhages (DH) and 
increase the sensitivity and accuracy of detecting the 
early stages of retinal illness, this study investigated a 
novel dynamic image comparison technique [26]. The 
strategy was able to compete with the most advanced 
deep learning and handmade techniques. Evaluation on 
the Kaggle APTOS and DIARETDB1 datasets revealed 
excellent performance, with DIARETDB1 obtaining up 
to 97% accuracy [27]. 

The research titled “DR: New concepts of screening, 
monitoring, and interventions” (2024) [28] highlights 
both biological insights and technological innovations in 
screening, monitoring, and treatment. This study on ear-
ly oxidative, inflammatory, and neurovascular changes 
in the retina and brain, even during prediabetes, demon-
strated that conventional fundus examinations only de-
tect DR at advanced stages. In contrast, advanced imag-
ing modalities such as OCT, OCTA, MSI, and ZNDpA 
staining, along with functional testing, can reveal earlier 
pathologies, enabling timely interventions like micro-
pulse laser therapy or topical/nasal antioxidants to pre-
serve retinal function. The review “current research and 
future strategies for the management of vision-threaten-
ing DR” [29] emphasized the importance of global strat-
egies to reduce the burden of vision loss, stressing the 
role of novel serum and imaging biomarkers, AI-assisted 
handheld retinal cameras for scalable screening, and the 
integration of predictive models with electronic medical 
records to support precision medicine, while noting that 
anti-VEGF therapy, though standard, remains costly and 
burdensome.

In another study [30], a modified U-Net was developed 
for automated haemorrhage segmentation in retinal fun-
dus images (IDRiD, DIARETDB1 datasets), achieving 
high diagnostic performance with 80% sensitivity, 99.6% 
specificity, 98.6% accuracy, an IoU of 76.61%, and a Dice 
score of 86.51%. Complementing this, another study [31] 
introduced a FastViT-based knowledge distillation frame-
work where EfficientNet-B0 served as the student model 
for DR severity classification using the Asia Pacific tele-
ophthalmology society (APTOS) 2019 dataset of 3,662 
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images across five severity levels. The model achieved 
an accuracy of 95.39%, precision of 95.43%, recall of 
95.39%, and an F1-score of 95.37%, demonstrating both 
high accuracy and computational efficiency.

Methods

DR can be divided into two stages: Proliferative DR 
(PDR), which is more advanced and is characterized by 
the development of new, aberrant blood vessels on the 
retina, and non-proliferative DR (NPDR), which is an 
early stage characterized by microaneurysms and retinal 
hemorrhages as shown in Figure 1. 

The fundus images correspond to each stage of DR. 
The second, third, and fourth stages are classified as 
NPDR, while the final stage is PDR, which carries a very 
high risk of vision loss, as shown in Figure 2. 

Deep neural networks are a powerful tool that that as-
sists medical practitioners in analyzing, modeling, and 
comprehending complex clinical data across various 

medical applications. The vast majority of applications 
in the field of artificial computing choose gradient-based 
back propagation algorithms for neural network training.  
According to Figure 3, an average neural network con-
sists of three phases: The input stage, the hidden stage, 
and the output stage. A proposed deep learning model 
for detecting DR uses 35% of the RGB-formatted input 
retinal images for testing, while 65% are used for train-
ing. The model extracts features from the images using 
convolution, pooling, and fully connected (FC) layers, 
categorizing them into five groups: No DR (normal), 
mild (NPDR), moderate (NPDR), severe (NPDR), and 
proliferative DR (PDR). 

An input retinal image is used to generate a feature 
vector for the neural network.  In the testing phase, a 
network is built using a wide variety of retinal images to 
effectively determine if a person has diabetes. To func-
tion, the neural network needs to go through two stages: 
training and testing.  Phase segmentation and informa-
tion extraction are followed by the use of neural net-
works to identify diabetic retinal disease. Finding fea-

Figure 1. Classification of DR
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tures of blood vessels, optical disks, and damage areas is 
the main goal of diagnosing diabetic retinal illness. The 
automation of the process necessitates a sophisticated 
system capable of managing it efficiently.  In order to 
achieve the goals, this work used a CNN with an ANN 
model. CNN is a widely used DL architecture in com-
puters. The subfield of computer vision in AI enables a 
computer to comprehend and evaluate visual informa-
tion, such as images. In ML, ANNs perform exceptional-
ly well and are extensively utilized across various types 
of datasets that include text, audio, and images.  Recur-
rent neural networks, particularly LSTMs, are used to 
estimate sequence orders.  CNNs are also employed in 
image classification. In this research, the fundamental 
elements of a CNN were built. Three different sorts of 
layers are commonly found in neural networks: 

1) The model receives data via the input layer, and the 
number of neurons in an image is related to its attributes 
or total number of pixels in an image.

2) The hidden layer receives data from the input layer.  
The number of hidden layers can be influenced by the 
model and the volume of data. Although the number of 
neurons in each buried layer may vary, overall, neurons 
outweigh features. By applying an activation function, 
adding biases, and multiplying the output of the preced-
ing layer by learnable weights, each network layer gains 
nonlinearity.

3) The output layer transforms the data into a more 
comprehensible format for probability ratings in each 
class using a logistic function such as softmax or sig-
moid.  In the next step, called feedforward, data is en-
tered into the model, and outputs are produced for each 
layer. An error function, such as mean squared error or 

Figure 2. Stages of DR in the fundus image

Figure 3. The proposed methodology
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cross-entropy loss, is then used to evaluate the network’s 
performance. This error factor gauges the effectiveness 
of the network. To reduce loss, backpropagation is ap-
plied to the model, and derivatives are calculated.

VGG-16 model 

The University of Oxford developed the CNN mod-
el known as VGG16. In the top five tests, this model 
achieves a 93% accuracy rate using 15 million images 
from 1000 classes in the ImageNet dataset. VGG16 is 
one of the well-known models used in the results of the 
imagenet large scale visual recognition challenge (ILS-
VRC). This model performs better than AlexNet by 
eliminating large kernel-sized filters and replacing them 
with a large number of smaller 3×3 kernel-sized filters. 
The VGG16 model was trained using the Titan Black 
GPU from NVIDIA. The architecture of VGG16 is sim-
plified and layered, including all the layers, their input 
and output sizes, and other architectural characteristics. 
In VGG16, the number 16 indicates the total number of 
layers whose weights can be trained. The weights of the 
thirteen convolutional layers can be altered during train-
ing, allowing for the adjustment of two FC layers and 
one dense layer.

An RGB image with a fixed 224×224 pixel size is fed 
into the convolution phase. A sequence of convolutional 
layers, each using filters with a 33 receptive field, is used 
to convolve with an input image. In one of the settings, 
eleven convolution filters are used. The input chan-
nels of this filter are linearly altered and the activation 
process is carried out utilizing the non-linear function 
RELU. The convolution stage is performed with a fixed 
pixel of 1. Convolutional spatial padding is meticulously 
calibrated to preserve the spatial resolution after convo-
lution. For 33 convolutions, we can maintain the spatial 

resolution after the convolution is complete using a one-
pixel padding. Five max pooling layers are used follow-
ing multiple convolutional layers. For the max pool-
ing operation, a window measuring 224 pixels by 224 
strides is utilized. The convolutional layer stack is fol-
lowed by three FC layers. There are 4096 units in each 
of the first two FC-connected tiers. The third FC layer 
has 1000 units because this model must categorize 1000 
different classes. The output of the penultimate layer in 
many multilayer neural networks consists of real-valued 
scores. However, real-valued scores can be challenging 
to work with and scale appropriately. In recent years, DR 
has become the most prevalent type of this illness. 

In this research, the traditional VGG-16 architecture 
was altered to work better for processing the retinal fun-
dus images. To reduce overfitting and computational 
complexity, optimized dense layers with fewer neurons 
replaced the last FC layers. Convolutional blocks were 
followed by batch normalization and dropout layers to 
enhance training stability and generalization. Experi-
mental trials were also conducted to fine-tune the opti-
mizer parameters and learning rate to achieve optimal 
convergence. To detect DH, the modified VGG-16 mod-
el was designed to capture both local and global retinal 
characteristics. 

The development of certain retinal hemorrhages may 
result from the increased fluid and reduced blood flow 
that enter the eye through the retina’s compromised 
blood vessels as diabetes worsens.  Hemorrhages in the 
retina could be a sign of an uncontrolled ocular illness or 
a systemic ailment. One crucial ocular diagnostic sign of 
a systemic vascular illness is retinal hemorrhages. The 
size, depth, and pattern of the hemorrhages allow us to 
make informed guesses regarding the potential under-

Figure 4. (a) Healthy retina; (b) diabetic retinopathy
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lying cause. Retinal hemorrhages require a multidisci-
plinary team to identify and treat. 

In the present study, the retinal images were classified 
as DH in the categories of severe, mild, moderate, and no 
DH based on their severity stages. Both the DHs and nor-
mal retinal images as shown in Figure 4 a and b. Early 
detection of these abnormalities could help ensure timely 
and effective treatment, protecting the eye from blindness. 
Fundus color retinal images obtained with dilated pupils 
were used by most researchers. Blood vessels and hemor-
rhages are identified separately, with classifiers employing 
high contrast enhancement to detect and rank anomalies. 

The primary goal of the current study was to detect dy-
namic DHs using dynamic foam analyzer inline photo-
metric stereo imaging, which helps to improve the accu-

racy of early diagnosis. The image abnormalities, which 
include blood vessels and hemorrhages, are shown in 
Figure 5. 

Figure 6 shows a block diagram of the proposed steps 
for DH identification, preprocessing, testing, and vali-
dation. Feature extraction methods, like size normal-
ization, contrast normalization, Gaussian blur, and data 
augmentation are used during the preprocessing phase. 
Using distinct training and testing datasets, the VGG-16 
model was utilized to predict the stages of DH based on 
the processed images throughout the testing and valida-
tion phase. 

Figure 5. (a) Retinal blood vessels and (b) hemorrhages

Figure 6. Proposed block diagram for dot hemorrhage detection
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Preprocessing stage

The suggested method was assessed using 1928 images 
for testing and 3662 images for training from the APTOS 
database. Figure 7 shows sample retinal fundus images 
from the APTOS and DDR datasets. Five types of DR 
are represented in each dataset: Mild, moderate, severe, 
proliferative, and no DR (normal). These images illus-
trate the visual variations and the severity progression 
of the different stages of DR used to train and evaluate 
the model. 

Image resizing

To ensure a uniform input size that works with DL sys-
tems, all retinal images were downsized to 224 by 224 
pixels. For this size, an empirical selection was deter-
mined following size normalization. For effective analy-
sis and model training, it is essential to maintain consis-
tency in image dimensions across the dataset. 

Figure 8 shows a sample of 15 retinal fundus images 
in varying sizes. Different phases of DR are represent-
ed by the retinal samples in the images, which exhibit 
differences in image quality, brightness, and contrast. 
These variations highlight the differences in the input 
data used for model training and preprocessing. The 
retinal image data were limited and unbalanced; there-
fore, data augmentation techniques were employed to 
increase and diversify the dataset. The original images 
were enhanced using contrast modification, flipping, and 

rotation. Flipping and rotating the same image produced 
different viewpoints, while adjusting the contrast made 
features more visible. These improvements successfully 
expanded the dataset, decreased overfitting, and allowed 
the model to learn more broadly applicable representa-
tions of the characteristics of DR. 

Contrast normalization: To increase contrast, each pix-
el’s neighborhood mean is subtracted, and the result is 
divided by the range of pixel values. This process em-
phasizes subtle retinal characteristics. To address poor 
contrast caused by glare or uneven lighting, pixel inten-
sity levels are standardized to a defined range. 

Gaussian blur: To reduce noise and smooth out images, 
a linear filter called a Gaussian filter—also referred to 
as a Gaussian blur [27] was employed. This windowed 
filter is named after Carl Gauss. The bell-function, often 
known as the Gaussian distribution, is used to compute 
the weighted average. It can be applied to spatial issues 
in one and two dimensions. The cutoff frequency (Fc) of 
the filter is determined by dividing the sample rate (Fs) 
by the standard deviation (σ). The following Equations 1 
and 2 provide the relationships. 

1. Fs =
Fc 1→σ

The 1D Gaussian filter is provided using the following 
equation:

Figure 7. Different stages of APTOS and DDR datasets
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2. G(x)= e-1 X2

sσ2√2πσ2
2→

Where ‘G(x)’ is the Gaussian (normal) distribution 
function, ‘x=0’ is the input pixel intensity or variable 
under consideration, ‘σ=0’ is standard deviation, which 
controls the spread (width) of the Gaussian curve, ‘e’ is 
Euler’s number (the base of the natural logarithm), and 
‘π’ is a mathematical constant. This distribution produc-
es a surface with outlines represented as Gaussian-dis-
tributed concentric circles extending outward from the 
center when applied to two-dimensional images.

Image after noise elimination: To improve the clarity of 
the image’s key characteristics, filtering techniques are 
usually used to eliminate any leftover noise and artifacts.

Final pre-processed image: The final image utilized for 
analysis or model training is the one that has undergone 
all preprocessing procedures. As seen in Figure 9, it is 
a standardized, noise-free, and cleaned version of the 
original image that is prepared for additional processing 
or categorization.

Figure 8. A sample of 15 images with different dimensions

Figure 9. (a) Input image; (b) Image resizing; (c) Image with Gaussian blur; (d) image after noise elimination ; and (e) final 
pre-processed image
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Simulation process

Green channel extraction, contrast enhancement, 
CNN-based segmentation, training model DL feature 
extraction 

The intrinsic low contrast of retinal fundus images ne-
cessitates the improvement of contrast. In order to iden-
tify the region of interest (ROI), color input images were 
converted to the green channel in Figure 10, which offers 
the highest contrast between exudates, blood vessels, 
hemorrhages, and the optic disc, making white lesions 
appear bright and red lesions appear dark.

Contrast enhancement: Contrast enhancement is one 
of the main pre-processing steps in diagnostic processes. 
Due to inadequate lighting, the source retinal fundus im-
ages lack contrast. The histogram equalization technique 
proves to be an effective method for improving low-
contrast images. To increase contrast while preserving 

the medium brightness of the input images, an improved 
version of contrast limited adaptive histogram equal-
ization (CLAHE) is utilized. Figure 11 illustrates how 
contrast is enhanced through the green ‘G’ channel and 
demonstrates how our updated contrast enhancement 
technique significantly improves the gradients.

CNN Segmentation: After the convolutional layer, an 
activation function is employed to facilitate rapid train-
ing. This function identifies all positive values and as-
signs zeros to all negative values. A max pooling layer is 
used in CNN layers to downsample the spatial size (h×w) 
of the feature map, reducing the feature dimensions and 
eliminating redundant spatial information. This process 
helps reduce overfitting and improve model efficiency, 
as shown in Figure 12.

Extraction of hemorrhages: Feature extraction is criti-
cal for identifying true hemorrhages from other retinal 
features, like blood vessels and noise. After identifying 

Figure 10. RGB channel extraction from a colorful image

 (a) Original input image; (b) R channel; (c) B channel; and (d) G channel

Figure 11. Contrast-enhanced retinal fundus images
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possible bleeding areas, essential parameters, such as 
area, eccentricity, and intensity variance are calculated 
to describe them. Hemorrhages are usually seen as small, 
circular dark spots with low eccentricity and homoge-
neous intensity. Circularity, compactness, and perimeter-
to-area ratio are additional shape descriptors that capture 
geometric properties, allowing for more accurate classi-
fication and fewer false positives in retinal image analy-
sis (Figure 13). 

Results

Testing & validation stage

Training models

The evaluation criteria for the trial are described in de-
tail below. The analysis of results, which is conducted in 
the manner outlined, will be discussed in the next sec-
tion.

Phase 1: In phase 1, the number of iterations in the 
model was examined. The following tables display the 
combinations selected for each pooling along with the 
accuracy levels tested throughout a variety of itera-
tions. The varying accuracy values for max pooling with 
various parameters are shown in Table 1. Accordingly, 
Tables 2, 3, and 4 present the results for min pooling, 
average pooling, and max-min pooling. 

Phase 2: Using 1,500 iterations, the previously indi-
cated combinations are revisited, and the outcomes are 
analyzed. The results for various pooling methods, in-
cluding max, min, average, and max-min, are shown in 
Tables 5, 6, 7, and 8, which compare the accuracy calcu-
lated using 1,500 iterations to that calculated using fewer 
than 100 iterations..

Phase 3: Max pooling, average pooling, and max-min 
pooling are the three combinations of pooling techniques 
that work best for this model and dataset. To develop a more 
suitable model with higher accuracy values, these combina-

Figure 12. CNN segmentation

Figure 13. Extraction of hemorrhages
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Table 1. Phase 1 selective combinations for max pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MAX pooling

ReLU Adadelta 0.1 50 0.73 73

LReLU Adadelta 0.1 50 0.71 71

LReLU Adam 0.0001 75 0.751 75.1

Tanh Adadelta 0.01 75 0.72 72

Table 2. Phase 1 selective combinations for min pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MIN pooling

ReLU Adadelta 0.0001 25 0.761 76.1

LReLU Adadelta 0.1 50 0.724 72.4

LReLU ADAM 0.0001 50 0.724 72.4

LReLU ADAM 0.0001 100 0.715 71.5

Table 3. Phase 1 selective combinations for average pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

AVERAGE pool-
ing

LReLU ADAM 0.01 50 0.734 73.4

Tanh Adadelta 0.01 25 0.71 71

Tanh SGD 0.01 50 0.71 71

Tanh ADAM 0.0001 75 0.754 75.4

Table 4. Phase 1 selective combinations for max-min pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MAX-min 
pooling

Tanh ADAM 0.001 0.72 0.687 68.7

LReLU ADAM 0.0001 0.803 0.864 86.4

Table 5. Phase 2 selective combinations for max pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MAX pooling

ReLU Adadelta 0.1 0.73 0.686 68.6

LReLU Adadelta 0.1 0.715 0.845 84.5

LReLU ADAM 0.0001 0.735 0.617 61.7

Tanh Adadelta 0.1 0.721 0.568 56.8
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tions as mentioned in Table 9, can also be used in conjunc-
tion with hybridization or optimization techniques. Table 10 
presents a quantitative comparison of our proposed system 
with other methods, demonstrating that our method outper-
forms the other algorithms even when dealing with large 
datasets. With an average accuracy of 93.26±0.48% and a 
95% CI; 92.66%, 93.86%, the proposed model demonstrat-
ed reliable performance over several runs. 

The accuracy determined using 1500 iterations is con-
trasted with that obtained from fewer than 100 iterations. 
It is evident that certain accuracy values increase as the 
number of iterations grows. The three pooling technique 
combinations selected for this model and dataset are max 
pooling, average pooling, and max-min pooling. 

Outcomes

The proposed research used CNN image classification, 
with the leaky rectified linear unit (LReLu) turned out to 
be the most efficient activation function; tanh function 

and rectified linear unit (ReLU) also performed well in 
certain combinations.

Adaptive moment estimation (Adam-50%) and adap-
tive delta (Adadelta-40%) optimizers provided good ac-
curacy values in CNN cases.

The results from the CNN show learning rates of 0.0001 
and 0.001, respectively, which produce better accuracy.

To facilitate effective training, a batch size of 32 was 
employed. The model was trained over 50 epochs to al-
low for convergence without overfitting. A dropout rate 
of 0.5 was used to randomly deactivate neurons during 
training to enhance generalization.

This research employed a total of 5590 retinal fundus im-
ages. The dataset was split into three categories: 65% for train-
ing (3662 images), 15% for validation (811 images), and 20% 
for testing (1117 images). This division was done to guarantee 
balanced representation and accurate model evaluation. 

Table 6. Phase 2 selective combinations for min pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MIN pooling

ReLU ADAM 0.0001 0.754 0.569 56.9

LReLU Adadelta 0.1 0.735 0.569 56.9

LReLU ADAM 0.0001 0.735 0.637 63.7

LReLU ADAM 0.0001 0.715 0.568 56.8

Table 7. Phase 7 selective combinations for average pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

AVERAGE pool-
ing

LReLU ADAM 0.01 0.765 0.637 63.7

Tanh Adadelta 0.01 0.71 0.864 86.4

Tanh SGD 0.01 0.71 0.637 63.7

Tanh ADAM 0.0001 0.763 0.617 61.7

Table 8. Phase 2 selective combinations for max-min pooling

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

MAX-min 
pooling

Tanh ADAM 0.001 0.72 0.687 68.7

LReLU ADAM 0.0001 0.803 0.864 86.4
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Several pre-processing techniques, such as scaling, 
contrast enhancement, and noise reduction, were applied 
to the images before training in order to enhance the vis-
ibility of retinal characteristics, like hemorrhages and 
micro-aneurysms. In order to preserve consistent pixel 
intensity across samples, data normalization was used. 
To reduce overfitting and enhance model generalization, 
data augmentation methods, including rotation, flipping, 
and scaling, were applied to the training set. To guaran-
tee equitable learning across all severity levels, the data-
set was thoroughly analyzed for class imbalance. When 
imbalances were found, strategies, such as class-weight 
correction and oversampling of minority classes were 
used. To achieve the best results, the RF algorithm was 
used as the main classifier, with the cross entropy loss 

function and ReLU activation being used as activation 
methods to improve nonlinear feature learning and guar-
antee effective gradient flow during model training. The 
suggested DL model for bleeding detection improved 
accuracy for the datasets and parameters as shown in 
Table 11. 

Hardware configuration

Processor: Intel Core i5; 11th Generation @ 2.40 GHz, 
GPU: NVIDIA GeForce GTX 1650 (4 GB VRAM); 
RAM: 8 GB DDR4.

Operating system: Windows 10 (64-bit). Deep learning 
framework: Tensor flow 2.10 with Keras. Training time: 

Table 9. Phase 3 selective combinations and their accuracy

Pooling Activation Optimizer Learning Rate Iterations Accuracy %

Average pooling Tanh Adadelta 0.01 0.71 0.864 86.4

Max-min pooling LReLU ADAM 0.0001 0.803 0.864 86.4

Max pooling LReLU Adadelta 0.1 0.715 0.845 84.5

Table 10. Performance comparison between our proposed method and other algorithms for dot hemorrhage detection

Ref Dataset Method Accuracy (%)

Zhang et al. [5] DIARETDB1 Multi-scale correlation filtering 90.6

Garcia et al. [32] MESSIDOR Four neural networks 83.08

Qureshi et al. [33] EyePACS ADL-CNN 98

Mumtaz et al. [34] DIARETDB1 Scale based 89

Our proposed method APTOS CNN 93.26

Table 11. Model parameters

Parameter Values

Total image dataset 5590

Train image dataset 3662

Final testing dataset 1928

Loss function Cross entropy loss

Machine learning algorithm RF

Activation function ReLU
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Approximately 70–80 seconds per epoch, with a total 
training duration of about 1 hour for 50 epochs.

Software tools

An Intel Core i7 processor, 16 GB of RAM, and an 
NVIDIA GeForce GTX 1660 Ti GPU running Windows 
10 (64-bit) were used. Python 3.8 was used to develop 
the proposed model, which included DL and ML librar-
ies for image preprocessing, feature extraction, and clas-
sification, including TensorFlow, Keras, scikit-learn, 
OpenCV, and NumPy. 

Classification of DR using ML

The different stages of eye disease were classified us-
ing several ML algorithms, such as LR, SVM, and RF 
to detect and categorize DH, as shown in Figure 14. The 
objectives of this work were hemorrhage detection and 
classification of the findings into three groups: Normal, 
NPDR, and PDR.

Hemorrhage detection

The detection scheme for hemorrhage consisted of four 
stages: 

Digitalization of image, hemorrhage detection, false 
positive in blood vessel elimination technique, feature 
analysis.

Fundus images used in ophthalmology to visualize the 
retina frequently exhibited hue shifts due to the flash 
light.  Brightness correction balanced the intensity across 
the image, whereas gamma correction adjusted the im-
age contrast in a nonlinear manner (0.5 to 3), increasing 
specific details for examination in fundus imaging.

Histogram stretching remapped the intensity values 
of pixels, bringing the lowest value closer to 0 (black) 
and the maximum value closer to 255 (white). When the 
green channel was employed solely for fundus image 
feature extraction, an RGB retinal image gained contrast. 
To make the relevant features stand out against the back-

ground, adaptive histogram equalization was applied. A 
3×3 median filter was used to reduce random noise in 
the images. 

The bounding box technique was used to reduce false 
positive blood vessels. The ratio of each segment’s main 
axis length to minor axis length was computed, and those 
with greater values (>1.57) were removed. The hemor-
rhages were identified, and their density was determined 
by counting the number of white pixels in the images, as 
shown in Figure 15. 

DH is classified into distinct types utilizing ML meth-
ods, like as RF, LR, and SVM. Among these, the RF 
model has the highest accuracy compared to the others, 
scoring 92.2% accuracy, as mentioned in Table 12. 

The RF model performed best among all the classifi-
ers assessed, successfully diagnosing PDR with an ac-
curacy of 93.2%, precision of 0.93, sensitivity of 0.92, 
and specificity of 0.94. In comparison, the SVM and lo-
gistic regression models achieved accuracies of 84.1% 
and 76.7%, respectively. Because RF is an ensemble 
model that successfully decreases variance and overfit-
ting and can capture complex non-linear interactions, it 
outperformed the other models. Our findings suggest 
that random forest (RF) offers a more reliable and flex-
ible framework for the classification of DR, as shown in 
Table 13. 

In Table 14, the mean accuracy, standard deviation, and 
95% CI were used to assess the performance metrics of 
three classifiers: RF, SVM, and LR. In comparison to 
the other techniques, the RF classifier demonstrated the 
highest mean accuracy (93.2%) with the least amount 
of fluctuation, demonstrating the stability and durability 
of the model. The Table 15 represents the classes over 
the available dataset to classify the percentage of correct 
classification. Stage-by-stage sample images from the 
APTOS dataset are displayed in the Figure 16.

Figure 14. Block diagram for the classification of diabetic retinopathy using machine learning
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Figure 15. a) Thresholding image; b) hemorrhages in the retinal image

Table 12. Summary of the experimental evaluation for accuracy

Model Binary_type
%

Normal Mild Moderate Severe PDR

Logistic regression DH 88.1 89.3 93.6 86.4 76.7

SVM DH 90.5 90.5 83.6 87.4 84.1

RF DH 92.3 91.6 92.7 91.4 93.2

Table 13. Summary of the experimental evaluation

Model Accuracy for PDR (%) Precision Sensitivity Specificity

Logistic regression 76.7 0.84 0.85 0.88

SVM 84.1 0.87 0.86 0.89

RF 93.2 0.93 0.92 0.94

Table 14. Summary of the experimental evaluation

Classifier Mean±SD Accuracy (%) 95% CI 

RF 92.2±1.02 91.0–93.4

SVM 90.85±1.45 89.3–92.4

LR 88.73±1.80 86.9–90.6
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Discussion

The percentage of correct classifications across dif-
ferent stages is shown in Figure 17, which displays the 
validation of test images by contrasting the actual input 
images with the anticipated output images. 

The accuracy of training versus validation is shown in 
Figure 18. As the number of epochs rises, so does the 
accuracy. The accuracy curves for training and valida-
tion at 50 epochs demonstrate consistent growth for both 

datasets, suggesting that the model learns effectively and 
performs well with minimal overfitting. 

The training versus validation loss is shown in Figure 
19. The loss curves for training and validation at 50 ep-
ochs exhibited a steady decline in both losses, indicating 
effective learning and good generalization of the model 
without severe overfitting. 

A model’s performance over several thresholds is 
graphically represented by the receiver operating char-
acteristic curve (ROC). The true positive rate (TPR) 

Table 15. DR-DH stage-wise classification for accuracy

Classes
No.

Correct Classification (%)
Training Data Test Data Correct Classification

0 No DR 1805 1390 1283 92.3

1 Mild 370 12 121 91.6

2 Moderate 999 206 191 92.7

3 Severe 193 82 75 91.4

4 Proliferative DR 295 118 112 93.2

Overall 3662 1928 1782 94.4

Figure 16. The APTOS dataset with a stage-wise label
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and false positive rate (FPR) are computed for every 
threshold or at particular intervals, and the TPR is plot-
ted against the FPR for all, as illustrated in Figure 20. 
In an ideal model, this would appear on the graph as a 
single point at coordinates (0, 1), with a TPR of 1.0 and 
an FPR of 0.0. 

Varying illumination, image quality, and lesion size 
across samples may have contributed to inconsistent fea-
ture representations. Future research could implement 
deep feature extraction techniques, ensemble learning 
approaches, or class-specific data augmentation strate-
gies to improve class separability and overall ROC per-
formance. 

As shown in Figure 21a and b, the confusion matrix 
for the APTOS datasets further demonstrated the per-
formance of our suggested method by highlighting the 
precise prediction of different DR stages. 

DR DH was classified using ML algorithms, such as 
RF, LR, and SVM in Tables 12, 13 and 14. Compared to 
the other models, the RF model exhibited the highest ac-
curacy. The accuracy of the suggested model was 93.2%, 
with a corresponding loss of 18.4%. 

Figure 17. Percentage of correct classifications

Figure 18. Training and validation accuracy
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Conclusion

A VGG16-based CNN model can detect retinal hem-
orrhages from the APTOS dataset with an impressive 
accuracy of 93.26%. The experimental results showed 
that the Leaky ReLU activation function improves 

model performance for image classification, whereas 
the Adam and Adadelta optimizers consistently outper-
form CNN-based learning. Furthermore, conventional 
ML models, such as RF, SSM, and LR were success-
fully used to classify multi-stage DR, achieving an ac-
curacy of 92.4% in recognizing dynamic imaging DHs. 

Figure 19. Training and validation loss

Figure 20. ROC curve for multiclass classification
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The findings can be further expanded using new DL 
architectures, like vision transformers (ViT) or hybrid 
CNN-Transformer networks, which provide better glob-
al context and feature extraction for subtle lesion identi-
fication. Self-supervised learning applied to large-scale 
unlabelled retinal datasets can increase model general-
ization and eliminate the need for manual labelling. The 
future scope of the research can be extended by enhanc-
ing model interpretability through the use of explainable 
AI (XAI) techniques, which would foster clinical trust 
and enable ophthalmologists to understand the reason-
ing behind predictions. Enhancing clinical applications 
and diagnostic interpretability will require integrating 
multimodal data fusion (fundus and OCT images), ex-
plainable AI algorithms, and uncertainty quantification. 
The clinical use of the suggested automated detection 
method in DR screening programs appears to have a 
promising future. The system’s ability to automatically 
identify early-stage DH lesions in retinal fundus images 
can help ophthalmologists prioritize high-risk patients, 
enabling prompt diagnosis and treatment. This method 
not only reduces the workload for medical profession-
als but also makes screening more accessible in settings 
with limited resources or in primary healthcare. Further-
more, improving the model for real-time or edge deploy-
ment will make scalable screening solutions possible 
in remote and resource-constrained settings. Together, 
these advancements have the potential to result in a more 
robust, generalizable, and clinically reliable system for 
automated DR diagnosis and grading.

Limitations of the study

The current study has significant limitations, even 
though it shows encouraging findings in the automated 
detection of DH for the early diagnosis of DR. First, the 

APTOS dataset was used for the experimental evalua-
tion, which would restrict the model’s applicability to 
other datasets or clinical situations with various imaging 
conditions, camera settings, and demographic variety. 
Second, the research mostly concentrated on identify-
ing a single lesion type, DH, without taking into account 
additional pathological characteristics that are necessary 
for thorough DR grading, such as microaneurysms, exu-
dates, and neovascularization. Additionally, the model’s 
reliability and diagnostic capability have not been veri-
fied in extensive prospective trials or real-world clinical 
settings. Investigating the potential application of this 
strategy in actual clinical workflows would be beneficial 
for future research. The model might be used, for exam-
ple, as a decision-support tool to assist ophthalmologists 
with patient triage, early identification, and large-scale 
DR screening. This would alleviate the diagnostic bur-
den and promote teleophthalmology-based screening in 
environments with limited resources.
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Figure 21. a) Confusion matrix-DR-DH stages; b) Confusion matrix-normalized output
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