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Research Paper
Simplified Speech Enhancement Using a Wiener 
Filter-Bi-GRU Hybrid Model

Background: External factors can often interfere with speech, causing it to lose important components. 
There are some problems with traditional algorithms and deep learning (DL) methods when it comes to 
removing background noise from noisy signals, especially when conditions are unstable or non-causal. 
The auto-associative property of the Wiener filter can be utilized to map distinguishing features such 
as SNR estimation and the gain of input source waveforms or their spectra. Enhancing noisy speech 
signals is essential in medical and assistive applications beyond traditional speech communication, 
including hearing aids, telemedicine, speech-based pathological diagnosis, and biomedical acoustic 
signal analysis. Improved intelligibility and clarity in these systems are crucial for accurate clinical 
assessments and human–machine interaction in healthcare settings. 
Methods: The proposed work introduces a fusion technique called the Wiener-based recurrent 
neural network (WRNN), which integrates the Wiener filter with an enhanced variant of the 
recurrent neural network (RNN) referred to as the bi-directional gated recurrent unit (Bi-GRU). 
This hybrid model improves speech quality and eliminates background noise from noisy input 
signals using both statistical filtering and temporal learning features. 
Results: The proposed WRNN achieved the following results on babbling noise: 
For the TIMIT dataset with the same type of noise, the scores were 85.4% and 91.5%. 
For the PESQ parameter, babble noise from the WSJ corpus at -5 dB and -2 dB SNR yielded 
scores of 2.98 and 3.15, respectively, while the TIMIT dataset with the same type of noise 
resulted in scores of 2.58 and 2.91. In the evaluated settings, the WRNN consistently outperforms 
baseline methods such as RNN, RNN-IRM, RNN-TCS, and ARN in both STOI and PESQ. 
Conclusion: The suggested Wiener filter–Bi-GRU (WRNN) fusion framework demonstrates its capacity 
to enhance speech signals in environments with non-stationary and non-causal noise. The model shows 
significant promise for improving medical signals in addition to general speech enhancement. It can aid 
in better understanding heart sounds, breathing signals, and pathological speech even in the presence of 
substantial noise. The performance metrics examined—short-time objective intelligibility (STOI) and 
perceptual evaluation of speech quality (PESQ)—validate the WRNN’s ability to maintain intelligibility 
and perceptual quality in both synthetic and real-world environments.
Keywords: Speech enhancement, Noise removal, Wiener filter, Bi-GRU, PESQ, STOI, 
Deep learning (DL), Speech quality enhancement, Medical signal processing, Hearing aids, 
Telemedicine
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Introduction

ackground noise often distorts and hides 
speech signals, making them difficult 
to hear clearly. To address this problem, 
speech enhancement techniques are used 
to reduce overlapping noise and make 
the speech clearer and more natural.  The 
main purpose of a speech enhancement 

system is to reduce noise in a signal that has been con-
taminated.  It works as a pre-processor for speech recog-
nition systems, making the speech signal cleaner without 
changing the recognizer itself. These systems are crucial 
for various applications, including voice-controlled de-
vices, audio restoration, automatic speech recognition, 
hearing aids, and telecommunications. 

The enhancement of distorted speech using additive 
noise with a single observation has been accomplished; 
however, it remains a tough issue. Noise is introduced 
into the pristine speech sample to generate noisy speech 
with an SNR ranging from 0 to 0.5 dB in increments of 
0.01 dB. The proposed model is divided into two phas-
es: (i) Instruction and (ii) evaluation. During the train-
ing phase, the noise spectrum and signal spectrum are 
derived from the noisy input signal using non-negative 
matrix factorization (NMF). Subsequently, features from 
the Wiener filter are recovered using empirical mean de-
composition (EMD) [1, 2]. This model integrates con-
volutional encoder-decoder and recurrent architectures 
to proficiently train intricate mappings from chaotic 
speech for real-time speech improvement, facilitating 
low-latency causal processing. Recurrent architectures, 
including long-short term memory (LSTM), gated recur-
rent unit (GRU), and simple recurrent unit (SRU), are 
utilized as bottlenecks to capture temporal dependencies 
and enhance the performance of speech enhancement. 
The model utilizes convolutional layers to effectively 
extract features from raw audio signals, along with layer 
normalization and bidirectional gated recurrent unit (Bi-
GRUs) to capture long-range temporal relationships and 
contextual information from both preceding and subse-
quent frames. Substantial enhancements were observed 
across five training epochs, with the training and valida-
tion loss decreasing from 311.9084 to 70.7906 and from 
303.5839 to 46.6886, respectively. Speech augmentation 
techniques have various applications, including hearing 
aids, voice-controlled devices, cellular phones, automat-
ic speech recognition systems, and multiparty telecon-
ferencing. 

There are various methods for filtering the distorted 
signal. Each approach is distinct, considering numerous 

criteria and being specific to its application. In certain 
instances, it may be necessary to enhance speech qual-
ity, while in others, accuracy is paramount; achieving 
both quality and accuracy simultaneously within the 
same timeframe is challenging [3-5]. However, there are 
several limitations to spectrogram properties. The result-
ing signal contains artefacts as a result of the computa-
tionally intensive pre- and post-processing steps of the 
discrete fourier transform (DFT)and its inverse. Second, 
these techniques often only approximate the magnitude 
in order to produce the increased speech. Most of the 
research suggests that the phase can raise speech quality. 
Adding a specific model for the phase component or an-
ticipating both magnitude and phase may add to model 
complexity, according to a recent study. 

This study aimed to investigate a critical research ques-
tion stemming from the challenges of speech enhance-
ment in highly non-stationary environments: whether 
the proposed WRNN exhibits robustness in challenging 
conditions, such as low SNR levels and fluctuating noise 
amplitude or variance, in comparison to current state-of-
the-art techniques. 

Related work

Numerous traditional algorithms play a major role in 
acting as active noise cancellation (ANC) in speech ap-
plications, utilizing adaptive filters, Kalman filters, and 
Wiener filters. These techniques are widely employed in 
hearing aids and other edge devices, such as phones and 
communication devices, while Wiener filtering adapts to 
industry standards for dynamic signal processing. Con-
temporary smartphone designers frequently position two 
microphones at different angles from one another: one 
close to the speaker’s mouth to record loud speech and the 
other to assess background noise and filter it out. Signals 
that have been distorted by noise or other disturbances 
can be improved or restored using the Wiener filter. It has 
been extensively utilized in fields, including communica-
tions, audio signal improvement, and image processing.

The drawbacks of Wiener filter include the need for 
separation of audio streams to effectively benefit from it. 
In scenarios such as a cockpit or smartphone, while hav-
ing two microphones is useful, it would also be advanta-
geous to handle noise from a single stream. Additionally, 
when the spectral properties of the audio and the back-
ground noise overlap, audible distortions in the speech 
may occur. The filter’s subtractive design can eliminate 
speech segments that resemble background noise. These 
problems have been addressed with the support and de-
velopment of deep learning (DL) [6]. 

B
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RNN has never been used for waveform-based speech 
augmentation; the first application was to denoise a 
waveform that was not speech, and the second was 
to increase speech bandwidth. The high resolution of 
waveforms calls for networks that are broader, deeper, 
and more expensive. Building a deep RNN is difficult 
because saturated activation functions cause gradient 
degradation over layers. Furthermore, our research in-
dicates that the size of the RNNs required for analyzing 
high-resolution waveforms demands larger RAM [7]. 
This systematic review analyzed speech improvement 
and recognition methodologies, focusing on denoising, 
acoustic modeling, and beamforming. An overview of 
various DL architectures, including deep neural net-
works (DNN), convolutional neural networks (CNN), 
recurrent neural networks (RNN), long short-term 
memory (LSTM) networks, and hybrid neural networks, 
emphasizes their contributions to enhancement and rec-
ognition [8]. It introduces UniInterNet, a unidirectional 
information interaction-based dual-branch network de-
signed to facilitate noise modeling-assisted software 
engineering without increasing complexity. The noise 
branch still receives input from the speech branch to 
enhance the accuracy of noise modeling. The findings 
from noise modeling are then utilized to aid the speech 
branch during backpropagation. This research presents 
a complete framework for speech emotion recognition 
that integrates the ZCR, RMS, and MFCC feature sets.

Our methodology utilized both CNN and LSTM net-
works, augmented by an attention model, to improve 
emotion prediction. The LSTM model specifically tack-
les the issues of long-term dependency, allowing the 
system to include prior emotional experiences in con-
junction with present ones [9, 10]. The Wiener filter is 
used to process the noisy speech signals and produce 
the clean speech targets. The RNN is then trained to use 
for minimizing mean squared error (MSE) or perceptual 
loss functions to decrease the difference between the tar-
get clean speech spectrum and the anticipated enhanced 
speech spectrum. The advantages of both strategies can 
be leveraged when the Wiener filter and RNN are used 
together compared to leading-edge techniques such as 
RNN-IRM [11], RNN-TCS [12], and RNN-ARN [13]. 
Studies have shown that advanced recurrent networks 
(ARN) perform better than other methods, like RNNs 
and dual-path ARNs, for improving speech in the time 
domain. Many contemporary smartphones are equipped 
with two closely positioned microphones. One micro-
phone is positioned near the speaker’s lips to capture 
loud speech, while the other detects background noise 
and filters it out [14, 15]. For sparse noise, which is 
mostly very low frequency with high decibels, there is 

a chance that it may lead to noise-induced hearing loss, 
necessitating the use of a hybrid algorithm to control its 
occurrence [16]. 

In speech improvement tasks, the bi-GRU model is 
frequently employed to improve the quality of voice sig-
nals by lowering background noise. It utilizes the mod-
el’s bidirectionality to gather information from the input 
sequence’s past and future frames. The bi-GRU model 
is used in speech enhancement to process noisy speech 
signals in both forward and backward directions at the 
same time. This approach helps capture long-term de-
pendencies and improves voice quality by enabling the 
model to learn representations that combine data from 
both previous and subsequent time steps. 

Upon analyzing this approach, it was found that a deep 
structured network finds it difficult to appropriately esti-
mate the infinte dynamic range of the SNR (−∞, ∞). For 
this reason, a compression function was used to prevent 
the convergence issues [17]. Moreover, SNR serves as a 
transitional stage before acquiring the Wiener filter func-
tion, which is needed to feed the SE algorithm. There-
fore, the network’s ability to produce a more reliable 
estimate of the Wiener filter through direct learning is 
more practical. 

The optimal use of the network for learning a robust 
instance of the Wiener filter estimator is found based on 
the properties of the speech enhancement algorithm’s in-
termediate phases, namely the SNR estimation and the 
gain function [18-22]. This work presented a novel DL 
model for sentiment analysis utilizing the IMDB movie 
reviews dataset. This model executes sentiment classifi-
cation on vectorized reviews employing two Word2Vec 
methodologies, specifically Skip Gram and Continuous 
Bag of Words, over three distinct vector sizes (100, 200, 
300), utilizing 6 bi-GRU and 2 convolutional layers 
(MBi-GRUMCONV). In the trials utilizing the suggest-
ed model, the dataset was divided into 80%-20% and 70-
30% training-test sets, with 10% of the training subsets 
allocated for validation purposes. 

Furthermore, it introduces a time-domain multi-chan-
nel Wiener filter algorithm for enhancing speech in 
the distributed speech model, aimed at recovering pure 
speech from observed speech. This paper initially pres-
ents the formula for the energy associated with noise re-
duction and speech distortion, subsequently formulates 
the optimization problem concerning these factors, and 
ultimately resolves the optimization problem to derive 
the formula for the optimal linear filter. This work em-
ploys an iterative technique to estimate the autocorrela-
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tion matrix of the source speech signal, thereby enhanc-
ing estimation accuracy. The findings of the simulation 
experiment indicate that the suggested approach outper-
forms numerous traditional multi-channel speech en-
hancement algorithms. 

The problems identified in the traditional algorithm 
have motivated the proposal of a design for a reliable au-
tomatic signal detection and recognition system, which 
focuses on amplifying weak signals in the presence of 
channel noise and background interference. The distin-
guishing features, like SNR estimation and gain of input 
source waveforms or their spectra, can be mapped using 
the auto-associative property of the Wiener filter.

The novelty of the proposed work lies in utilizing the 
capabilities of Bi-GRU-based neural networks to create 
filters that first learn and then subtract background noise 
from the input waveform, thereby increasing the likeli-
hood of detecting weak signals. Practical challenges in 
enhancing non-stationary and non-causal signals can be 
effectively addressed by a WRNN that learns to selec-
tively filter out background noise without significantly 
affecting the signal.. Furthermore, using different corpo-
ra with non-stationary noises under low SNR conditions, 
in the presence of background noise and channel noise, 
a novel base WRNN filter improves signal detectability 
based on an analytical foundation.

Section 2 will explain the signal model and problem 
formulation. This section includes a block diagram, as 
well as discussions on pre-processing, noise removal, 
and post-processing. Section 3 will discusse the simu-
lation results and provide a discussion on existing and 
proposed techniques, followed by conclusions.

Methods

Signal model and problem formulation 

Noise can easily mixed with speech signals in real-
world settings. Reverberations fall into two categories: 
stationary noise (which does not change over time) and 
non-stationary noise (which changes when shifted in 
time). Examples of background noise in the non-sta-
tionary category include street noise, babble noise, train 
noise, cafeteria noise (from other speakers’ voices), and 
instrumental sounds. 

Block diagram of the proposed work 

The proposed WRNN Model consists of three stages, 
namely pre-processing, noise reduction, and speech en-
hancement in post-processing, as shown in Figure 1.

Noisy speech input

A noisy speech signal—which includes both speech 
and undesired background noise—is used to initiate the 
procedure. The system’s objective is to improve voice 
quality by lowering noise levels. 

Short-time fourier transform (STFT)

STFT is used to transform the time-domain loud speech 
into the time-frequency domain. To examine frequency 
components over time, STFT splits the signal into tiny 
frames and uses the Fourier transform. This facilitates 
the separation of speech and noise components. 

Wiener filter

The Wiener filter is a traditional technique for reducing 
noise. It operates by minimizing the mean square error 

Figure 1. Workflow of the proposed model
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between the real and estimated clean signals. This block 
creates a spectrogram with reduced noise and provides 
initial noise suppression.

Bi-GRU layers (layers 1 & 2)

Following Wiener filtering, the features are fed into 
sophisticated RNN called Bi-GRU. In order to improve 
speech feature representation, Bi-GRU layers 1 and 2 
progressively process information from both past and 
future contexts. This improves the ability to distinguish 
speech from noise and aids in modeling temporal con-
nections. 

Fully connected layer

A completely connected layer receives the processed 
features from the Bi-GRU layers. This layer maps the 
high-level learned features into the necessary format 
(e.g. predicted clean speech magnitude spectrogram). 
Essentially, it serves as a decision-making stage to com-
plete the enhancement. 

Inverse short-time fourier transform (ISTFT )

ISTFT is used to transform the improved spectrogram 
back into the time-domain waveform. The improved 
voice signal is reconstructed in this manner. 

Enhanced speech output

The outcome is a clearer speech signal with diminished 
background noise and enhanced intelligibility. 

Figure 2 depicts the proposed block diagram for speech 
enhancement with background non-sationary noise reduc-
tion. In a pre-processing stage, initially noisy data will un-
dergo short-term windowing techniques, and this output 
will be applied to the STFT to obtain the phase and mag-
nitude response. In second stage, which is the noise reduc-
tion stage, the Wiener filter function is used to calculate 
the gain factor and SNR estimation for the input features 
before moving to the post-processing stage. In the third 
stage, ISTFT is initially applied using an overlap-add con-
volution method to extract input features for the Bi-GRU-
based RNN model, which is designed to remove non-sta-
tionary noise components from noisy speech. The detailed 
stage-wise explanation follows in the next section. 

Pre-processing and database

To develop an accurate noise removal model, creating 
a high-quality training dataset is crucial. In this case, the 
TIMIT and WSJ databases were used to obtain clean 
speech and noisy speech data. These two databases were 
combined to create a larger dataset comprising a total of 
7.5 hours of speech. The dataset was then split into sepa-
rate portions: 60% for training, 20% for development, 
and 20% for testing. 

Figure 2. Block diagram of the WRNN model
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During the construction of the dataset, certain consider-
ations were taken into account. Firstly, the ratio of male 
to female speakers was balanced to ensure a diverse rep-
resentation of voices. Additionally, it was ensured that 
there is no overlap of speakers between the different 
groups. This helps maintain the independence of the data 
subsets and prevents any bias that could arise from hav-
ing the same speaker present in multiple sets. 

The inclusion of both clean speech and its correspond-
ing noisy counterpart in the dataset is essential because 
the objective is to reduce background noise. The nature 
of the dataset should align with the specific use case of 
the model being developed. For instance, if the model 
is intended to be used for noise removal in signals from 
a helicopter pilot’s microphone, it would be logical to 
train the network using auditory samples corrupted by 
rotor noise. 

On the other hand, for a noise removal model intended 
for widespread use, incorporating authentic background 
noises, such as air conditioning, typing, dog barking, 
traffic, music, and loud conversations would be reason-
able. The optimum way to use the network for learning a 
reliable Wiener filter estimator is defined by the proper-
ties of the speech enhancement algorithm’s intermediate 
phases, namely the gain function and SNR calculation. 
Studies demonstrate that the robustness of the statistical-
based speech estimator technique stems from the data-
driven learning process of the SNR estimator, resulting 
in high performance. 

In the Equation 1:

1. )()()( ndnxny +=

where “x(n)” represents clear speech, “d(n)” stands for 
additive noise, and “n” represents the discrete-time index, 
the observed noisy speech signal is denoted as “y(n)”. 
To begin the pre-processing stage for speech enhance-
ment in the spectral domain, the observed noisy speech 
signal “y(n)” is segmented into overlapping frames us-
ing a window function. This segmentation facilitates the 
analysis of the speech signal over shorter time intervals 
and captures the temporal characteristics of the signal. 
Following the segmentation, a STFT is applied to each 
frame. The STFT computes the spectrum representation 
of the signal by taking the Fourier transform of each 
frame. This transformation converts the speech signal 
from the time domain to the frequency domain, provid-
ing information about the spectral content of the signal 
at different frequencies. The STFT representation of the 
segmented frames can be represented as a matrix, where 

each column represents the frequency content of a spe-
cific frame. This matrix can be further processed using 
various speech enhancement techniques to decrease or 
eliminate the noise component and improve the excel-
lence of the speech signal.

2. 
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mined using the gain of the minimum mean square error 
(MMSE) estimator, known as GMMSE. The GMMSE gain 
is based on the likelihood that speech is present in the 
signal. The spectral-domain speech estimation method 
calculates the filter gain function using various factors 
and techniques as Shown in Figure 3.

Noise simulation

To examine the effects of both variance and amplitude 
changes in background noise, controlled noise simula-
tion was carried out in addition to using normal clean 
and noisy datasets. Gaussian and babbling noise samples 
with different noise strength levels were created for this 
purpose. A range of SNR circumstances (−5 dB, −2 dB, 0 
dB, and +5 dB) were simulated by scaling the magnitude 
of the noise components. Likewise, variance scaling was 
used to simulate time-varying noise energy fluctuations. 
This provided us with the opportunity to investigate how 
the WRNN responds to abrupt and arbitrary variations 
in noise levels. 
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Noise reduction stage (wiener filter) 

Wiener filtering is widely used as a standard dynamic 
signal processing technique in hearing aids and other 
auxiliary devices, like phones and communication 
equipment. It is an adaptive filter that performs opti-
mally when provided with two audio signals - one con-
taining both speech and background noise, and the other 
measuring only the background noise. Modern smart-
phones often incorporate two microphones placed at a 
distance from each other. One microphone is positioned 
near the speaker’s lips to capture the speech, which may 
be accompanied by noise, while the other microphone is 
dedicated to monitoring the background noise, enabling 
effective noise filtering.

Because it can anticipate and reduce noise, the Wiener 
filter is essential for both noise removal and augmen-
tation. There are difficulties when integrating Wiener 
filters into big communication systems, including hard-
ware needs and power consumption. The performance 
of the system was improved by employing the pipelined 
method. The proposed Wiener filter addressed iteration 
issues encountered in traditional designs by replacing the 
division operation with an effective inverse and multipli-
cation operation. The architecture for matrix inversion 
was also redesigned to reduce computational complex-
ity. Consequently, we directly expressed the Wiener fil-
ter’s gain function as Equation 3: 
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Where ',' lkζ  is the computed a priori SNR for each 
frequency k bin and time slice l.

For each variance of a spectral component, the gain 
function in the SS approach is, for example, defined as 
the square root of the maximum likelihood estimator. 
This can be explained by GMMSE as (β = 2) (Equation 4): 
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Regarding changes to this algorithm, several modifica-
tions have been researched. The a priori and a posteriori 
SNR are widely used to describe traditional speech en-
hancement algorithms. The a priori SNR is calculated 
using the PSD of the noise signal and the clean speech 
(Equation 5): 
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Where ]|)','([|)','( 2lkXElkPx =  represents the clean 
speech PSD, ]|)','([|)','( 2lkDElkPd =  refers to is the 
noise signal PSD, both in frequency bin k. The noise sig-
nal PSD and the noisy spectral power determine the a 
posteriori SNR (Equation 6). 
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Figure 3. Schematic comparison
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As we can see, the a posteriori SNR may be derived uti-
lizing the noisy spectral power along with an estimate of 
the PSD of the noise. To determine the noise spectrum, 
numerous statistical algorithms have been proposed. 
For instance, minima controlled recursive averaging 
(MCRA), minimal statistics, and histogram-based tech-
niques, among others. Artificial neural networks, once a 
novel idea, have recently gained traction as DL. Despite 
the existence of various DL techniques for noise remov-
al, they all operate by learning from training samples. 
Within the framework of the traditional spectral-domain 
speech estimator algorithm, the proposed work suggests 
a Wiener filter estimator for voice augmentation based 
on DL. The optimal use of the network for learning a 
robust version of the Wiener filter estimator is deter-
mined by the properties of the intermediate phases of the 
speech enhancement algorithm, namely SNR estimation 
and the gain function. Experiments demonstrate that em-
ploying data-driven learning of the SNR estimator yields 
state-of-the-art performance and provides resilience to 
the statistically-based voice estimator technique. 

Post-processing (speech enhancement)

The post-processing stage proposes a solution to ad-
dress the challenges by combining a GRU with learned 
speech features along with an adaptive Wiener filter. The 
main contributions of the proposed work can be sum-
marized as follows: 

(i) Modified wiener filter: The proposed work designs 
a  modified version of the Wiener filter for decomposing 
the speech spectral signal to enhance the performance 
of speech by effectively separating the speech and noise 
components. 

(ii) Introduction of Bi-GRU model: The Bi-GRU mod-
el is introduced to accurately estimate the tuning factor 
of the Wiener filter for each input signal. As a type of 
RNN, the Bi-GRU is capable of learning and capturing 
the temporal dependencies of the speech signal, which 
helps in determining the appropriate tuning factor for 
noise reduction. 

(iii) Training with extracted features: The modified 
Wiener filter is used to train the GRU model by utilizing 
the extracted features obtained from the trial phase of the 
process called empirical mode decomposition (EMD). 
EMD captures relevant information about the speech 
and noise components that are used as input for the Bi-
GRU model during the training phase. By combining 
the modified Wiener filter, the Bi-GRU model, and the 
extracted features from EMD, the proposed work aims 

to strengthen the accuracy and effectiveness of speech 
enhancement by dynamically adapting the Wiener filter 
based on the input signal characteristics. 

For the voice augmentation challenge, advancements 
in DL have achieved excellent results, demonstrating 
the removal of background noise, including dog bark-
ing, kitchen noise, music, babbling, traffic, and outdoor 
sounds. The novelty of the proposed work lies in its ef-
fectiveness in attenuating both quasi-stationary and non-
stationary noise compared to conventional statistical sig-
nal processing methods. 

When the measured signal is minimally influenced by 
noise or is predominantly clean, the dynamic range of 
the SNR may increase due to the potential values used as 
outcomes, making regression more susceptible to errors 
in this situation. However, due to the influence of SNR 
on the GMMSE (Equation 7), high SNR conditions produce 
substantial gain values with GMMSE approaching 1, while 
low SNR conditions result in  GMMSE approaching 0. As 
a result, the dynamic range needed to achieve regression 
for the GMMSE would be bounded between [0, 1], making 
it a task that a deep structured network is better equipped 
to perform.

7. GMMSE = 

SNR
11

1

+

Another factor that contributed to the choice of a deep 
structured network for this purpose was its ability to cre-
ate a causal augmentation system. This implies that it can 
be utilized in online applications since it is not dependent 
on future time frames. The network also employs non-re-
cursive estimating techniques to prevent the propagation 
of estimation errors from earlier frames. The previously 
stated statistical SNR-estimators often rely on recursive 
(feedback system) and causal algorithms.

The suggested RNN-based noise reduction technique is 
illustrated in Figure 4. The deep structured network was 
trained in a supervised manner using both noisy audio 
samples and clean audio samples as inputs. The objec-
tive of the network was to accurately predict the MMSE 
gain from the noisy signal based on Equations 2 and 4. 
To achieve this, the network needs to be aware of the 
power spectral density (PSD) of the noise, denoted as 

)','( lkPd , and the PSD of the clean speech, denoted as 
)','( lkPx , during the training process. These PSDs are 

estimated using the Welch approach, which is a com-
monly used method for PSD estimation. 
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Bi-GRU model

RNNs are capable of handling sequential data. As 
they work with the current data, RNNs can also retain 
knowledge from earlier data. The GRU is a less com-
plex version of the GRU, both of which are enhanced 
RNN models with potent modelling skills for long-term 
dependencies [20]. A reset gate and an update gate  make 
up a GRU unit. Under the direction of these two gates, 
the output ht is governed by both the present input  and 
the preceding state h(t−1). The outputs of the gates and 
the GRU unit are calculated using Equation 8. 
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Where Wr,Ur,Wz,Uz,Wh, and Uh are the weight matri-
ces, and br,bz, and bh are the bias vectors.  Equation 7 rep-
resents the equations used in the GRU model, where xt is 
the input at time step t, ht−1 is the previous hidden state, 
and rt,zt, and ht are the update gate, reset gate, and cur-
rent hidden state, respectively, at time step t. The update 
gate rt controls how much of the previous hidden state 
should be considered for the current time step, while the 
reset gate zt determines how much of the previous hid-
den state should be ignored. These gates are computed 
using the logistic sigmoid function σ. The hidden state 
ht is computed based on the input , the previous hidden 
state ht−1 and the update and reset gates. The Hadamard 
product, ⊗  , is used to combine the input and the previ-

ous hidden state with the update gate, and the hyperbolic 
tangent function (tanh) is applied to obtain the current 
hidden state.

When working with sequential data, models with a bi-
directional structure have the capability to learn infor-
mation from both past and future data points. Figure 5 
illustrates the structure of the bi-GRU model. It consists 
of two GRUs, one moving forward and the other moving 
backward. The first GRU processes the input sequence 
from the beginning to the end, capturing the dependen-
cies in the forward direction. The second GRU processes 
the input sequence in reverse, starting from the end and 
moving toward the beginning, capturing the dependen-
cies in backward direction [21]. By combining the out-
puts of the forward and backward GRUs, the bi-GRU 
model incorporates information from both past and fu-
ture contexts, allowing it to have a more comprehensive 
understanding of the input sequence at each time step. 
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Figure 4. Gated recurrent unit model
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 represent the hidden states of the forward and 
backward GRUs from the previous and subsequent time 
steps, respectively. The output of the bi-GRU at each 
time step, ht, is a concatenation of the forward and back-
ward hidden states, providing a richer representation that 
incorporates information from both directions.

The GMMSE  was calculated using a GRU-based RNN 
design with multiple inputs based on 1-dimensional con-
volutions. The MATLAB tool was utilized to generate 
the patterns. The front end of the system employed a set 
of speech representations computed on a 25 ms Ham-
ming window frame with a 10 ms overlap. 

This included calculating a 512-dimensional FFT, 32 
Mel filter banks, and 32 cepstral features. These features 
were then stacked to create a single input feature vector 
for the network for each frame slice. To normalize the 
input data, the mean and variance of the training samples 
were used. During the training process, input features 
were generated on the fly, which allowed the system to 
compute mask predictions for each time-frequency area 
in a single forward pass while calculating the average 
loss to determine the gradients. For training the network, 
each audio file in the training set was divided into two-
second segments, equivalent to 200 frames. A batch of 
32 of these segments was then used to train the network. 
During the evaluation phase, the mask inference was 
computed for each speech in the evaluation group. 

To train a deep neural network, a 1-D CNN was em-
ployed to classify the sequence data and learn its features 
by applying sliding convolutional filters to the 1-D input. 
Because convolutional layers can process the input in a 

single operation, employing 1-D convolutional layers 
can potentially be faster than utilizing recurrent layers. 
Recurrent layers, on the other hand, have to repeat across 
the input’s time steps. The normalized molecular prop-
erty of the sequence data was then extracted using a 1D 
CNN. Moreover, temporal characteristics were retrieved 
from the extracted data using GRU layers. The system’s 
design comprised five Bi-GRU blocks, each with an in-
creasing number of channels. The specific details of the 
network dimensions of the architecture used for estimat-
ing GMMSE are provided in Table 1. 

Applications of WRNN in medical signal en-
hancement

The suggested WRNN model had significant potential 
for processing medical signals, particularly for eliminat-
ing noise in biomedical acoustic signals such as phono-
cardiograms and respiratory sounds. In telemedicine and 
assistive hearing applications, environmental and physi-
ological noise can obscure clinically significant charac-
teristics. By effectively removing non-stationary noise 
components, the hybrid WRNN framework can enhance 
these signals, making automated analysis systems more 
reliable for diagnosis. Furthermore, the proposed mod-
el’s ability to maintain speech clarity while reducing dis-
tortion is highly beneficial for real-time monitoring and 
communication with patients in speech-based pathologi-
cal assessments and hearing aids.
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Results 

Simulation results

Figure 6 shows the training progress response for the 
WRNN model. Table 2 provides the hyperparameters 
and settings for the proposed model. The maximum 
number of iterations for the training session was 2,319, 
with 3 epochs observed and 773 iterations per epoch. 
The first response represents iteration versus RMSE, 
while the second represents iteration versus loss. During 
the training process, epoch 1 showed a significant dif-
ference in RMSE and loss, while epoch 2 showed a de-
caying trend with stability in epoch 3, reaching minimal 
RMSE with zero loss in both the training and validation 
processes at the final stage. 

The speech data was chosen randomly from the test set, 
and both the suggested and current techniques were used 
to assess the background noise of babble noise with SNR 

values of -5 dB & -2 dB. Figure 7 displays voice spectro-
grams before and after WRNN-based speech improve-
ment processing. There were four subplots, namely clear 
speech, noisy speech, normal RNN, and WRNN. In con-
trast to the RNN module, the residual noise components 
of the WRNNs were nearly equal to the original clear 
speech, while the improved speech spectra were blurred 
along both the time and frequency axes.

The time domain graph of clean speech, noisy speech, 
output speech from the RNN module, and output speech 
from the WRNN module is shown in Figure 8. It is clear 
that the module WRNN supressed almost all the noise 
components, resulting in an enhanced speech output 
compared to the existing RNN module. 

Figure 9 shows STOI (%) of the existing and proposed 
WRNN model tested with the WSJ and TIMIT corpora. 
The bar graph indicated the -5 dB and -2 dB SNR input 
noise levels. From the test results, it has been observed 

Table 1. Architeture of the network dimensions and channel  estimating for GMMSE calculation

Layer Kernel Size Dilation rate Input Dimention Output Dimention

First Block with 4 Bi-GRU 6 4 256 256

Second Block with 4 Bi-GRU 4 3 256+256 512

Third Block with 4 Bi-GRU 4 2 256+512 768

Fourth Block with 4 Bi-GRU 3 2 256+768 1024

Fiveth Block with 4 Bi-GRU 2 1 256+1024 1024

Output Layer - - 256+1024 256

Table 2. Hyperparameters 

Parameter Value/Setting

Optimizer Adam

Learning rate 0.0003

Batch size 32

Loss function MSE

Hidden units (Bi-GRU) 256

Dropout rate 0.2

Epochs 100

Framework/version PyTorch 2.2

Total trainable parameters ≈2.14 million

MSE: Mean squared error.�
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that the proposed WRNN model achieves better results 
compared to the existing four types. Figure 10 displays 
the PESQ of the existing and proposed WRNN model 
tested with the WSJ and TIMIT corpora. 

Table 3 shows the STOI and PESQ performance of both 
non-causal existing methods and the proposed method 
with different types of noise across different corpora. For 
testing the models, we chose babble and cafeteria noise 
at -5 dB and -2 dB. Additionally, the same noisy signals 
were selected from different dataset corpora, such as 

Figure 6. WRNN training progress

Figure 7. Spectrogram of clean speech, noisy speech, output speech from the RNN module, and output speech from the 
WRNN module

R A, et al. Speech Enhancement Using a Wiener Filter-Bi-GRU Hybrid Model. JRH. 2025; 15(Special Issue: Artificial Intelligence):761-778.
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WSJ and TIMIT. We compared the performance of the 
RNN and WRNN algorithms alongside RNN-IRM [11], 
RNN-TCS [12], and ARN [13]. Observations indicate 
that the WRNN produces excellent results compared to 
the other models. To measure the STOI parameter, we 

considered babble noise from the WSJ corpus, where the 
input at -5 dB and -2 dB SNR achieved scores of 92.1% 
and 94.9%, respectively. For the TIMIT dataset with the 
same type of noise, the scores were 85.4% and 91.5%.

Figure 8. Time domain graph of clear speech, noisy speech, output speech from RNN Module, and output speech from the 
WRNN module

Table 3. STOI and PESQ Performance between non-causal wrnn and other approaches 

Noise Type Babble Cafeteria

Dataset Corpus WSJ TIMIT WSJ TIMIT

SNR (dB) -5 -2 -5 -2 -5 -2 -5 -2

STOI (%)

RNN 82.5 86.8 75.3 81.9 79.8 85.1 74.5 80.6

RNN-IRM [11] 83.7 88.4 76.3 83.3 81.9 86.9 76.3 82.3

RNN-TCS [12] 88.1 92.2 79.3 87.5 85.8 90.3 80.4 86.6

ARN [13] 91.1 94.1 84.5 90.6 88.3 92.1 82.7 88.6

WRNN 92.1 94.9 85.4 91.5 89.1 93.1 83.6 89.8

PESQ

RNN 2.46 2.75 2.21 2.4 2.21 2.56 2.15 2.4

RNN-IRM [11] 2.51 2.82 2.27 2.6 2.49 2.76 2.31 2.57

RNN-TCS [12] 2.63 2.89 2.22 2.59 2.52 2.76 2.26 2.53

ARN [13] 2.82 3.04 2.43 2.78 2.64 2.87 2.36 2.65

WRNN 2.98 3.15 2.58 2.91 2.82 2.99 2.51 2.82
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Table 4 shows the STOI and PESQ performance of 
causal existing methods compared to the proposed 
method with different types of noise across various 
corpora. For testing the models, we again chose babble 
and cafeteria noise at -5 dB and -2 dB. Also, the same 
noisy signals were selected from different dataset cor-
pora, like WSJ and TIMIT. Similarly, we tested another 
noise pattern, cafeteria noise, which also demonstrated 
a comparable improvement when compared with exist-
ing models. Additionally, we measured another speech 
quality test parameter, PESQ. For the PESQ parameter, 
babble noise from the WSJ corpus at -5 dB and -2 dB 

SNR yielded scores of 2.98 and 3.15, respectively, while 
the TIMIT dataset with the same type of noise resulted in 
scores of 2.58 and 2.91.

In this work, computational complexity was measured 
as the number of MACs per sequence lenths (T). The 
computational cost increased almost linearly with T 
for all models as shown in Figure 11. A moderate com-
plexity profile was displayed by the WRNN Bi-GRU, 
which is lower than more complicated architectures, like 
DPARN and ARN but higher than lightweight models, 
like DCN, RNN-IRM, and RNN-TCS. Importantly, our 

Figure 9. STOI (%) of the existing and proposed model tested with WSJ and TIMIT corpora

Figure 10. PESQ of the existing and proposed model tested with WSJ and TIMIT corpora
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primary results (STOI and PESQ) demonstrate that the 
WRNN achieves this balanced complexity while provid-
ing greater intelligibility and quality benefits. 

Discussion

The outcomes of this research demonstrated the ef-
ficiency of the proposed WRNN framework for voice 

improvement in noisy environments. By utilizing both 
data-driven learning and statistical priors, the hybrid de-
sign greatly enhanced intelligibility and perceptual qual-
ity in comparison to traditional statistical techniques, like 
the standalone Wiener filter. While the Wiener filter of-
fers reliable SNR estimates that maintain performance in 
low-SNR and non-stationary noise scenarios, the Bi-GRU 
network records temporal dependencies between frames. 

Table 4. STOI and PESq performance between causal WRNN and other causal approaches to speech enhancement

Noise Type Babble Cafeteria

Dataset Corpus WSJ TIMIT WSJ TIMIT

SNR (dB) -5 -2 -5 -2 -5 -2 -5 -2

STOI(%)

RNN 82.3 85.2 72.8 80.2 76.7 83.5 73.2 78.2

RNN-IRM [11] 83.1 86.4 75.1 81.1 80.2 85.7 75.1 81.4

RNN-TCS [12] 87.8 90.8 76.9 84.2 82.9 88.3 79.4 85.1

ARN [13] 90.1 92.1 82.5 89.6 86.8 90.3 80.7 86.2

WRNN 91.3 92.8 84.2 90.3 87.8 91.6 82.1 87.9

PESQ

RNN 2.38 2.69 2.17 2.35 2.18 2.51 2.12 2.38

RNN-IRM [11] 2.45 2.77 2.15 2.42 2.44 2.72 2.28 2.52

RNN-TCS [12] 2.55 2.82 2.21 2.47 2.48 2.70 2.21 2.49

ARN [13] 2.72 3.00 2.38 2.65 2.61 2.83 2.32 2.61

WRNN 2.91 3.11 2.52 2.84 2.79 2.95 2.49 2.78

Figure 11. Comparison of computational complexities for all models employed in this research
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The proposed WRNN model exhibited better perfor-
mance in the removal of non-stationary and non-causal 
noise across the TIMIT and WSJ datasets; however, cer-
tain constraints exist. First, the evaluation was limited 
to two datasets, which might not accurately reflect the 
variety of acoustic characteristics found in real-world 
settings, such as low-resource languages or extremely 
reverberant surroundings. Second, without additional 
optimizations, like pruning or quantization, the direct 
application of the model in real-time or embedded sys-
tems is limited due to its comparatively higher complex-
ity compared to traditional statistical techniques, which 
may result in increased computational costs and latency. 
Third, babbling noise was the primary focus of the ex-
perimental setup; further research is needed to assess 
performance against other challenging noise types, such 
as impulsive noise and mechanical interference. Lastly, 
although the Bi-GRU enhances temporal modeling, it is 
less effective than more recent transformer-based sys-
tems at capturing long-range dependencies. Future work 
will address these limitations by including a variety of 
noise types, expanding the evaluation to additional data-
sets, and investigating lightweight architectures for real-
time deployment.

Even though the existing WRNN architecture success-
fully enhances speech by combining Wiener filtering 
and Bi-GRU, more advanced temporal modeling tech-
niques could be advantageous for future developments. 
Integrating attention mechanisms to allow the model 
to selectively focus on informative temporal frames or 
spectral regions is one promising approach that could 
enhance performance in extremely dynamic noise envi-
ronments. Furthermore, using transformer-based designs 
might improve the system’s capacity to recognize con-
textual linkages and long-range dependencies in speech 
sequences. Transformers may offer a more adaptable 
representation framework than recurrent models and 
have shown impressive performance in sequential data 
modeling across a variety of speech and audio chal-
lenges. The interpretability of the learnt representations, 
generalization across datasets, and noise robustness may 
all be enhanced by incorporating these methods into the 
WRNN framework. Moreover, hybrid systems that com-
bine adaptive Wiener filtering with temporal self-atten-
tion may provide the optimal balance between enhance-
ment quality and computational efficiency. 

Conclusion

The proposed work used fusion technique to remove 
the background noise for non-stationary and non causal 
signals. In this work, two spectral domain speech esti-

mators were examined using the Weiner estimator fol-
lowed by an RNN to improve speech quality, adhering 
to the traditional speech augmentation processing par-
adigm. The collected findings showed that despite the 
RNN introducing very little distortion, the system based 
on the WRNN offered the best balance between speech 
augmentation in terms of quality measures and signal 
distortion. 

The method’s speech enhancement performance was 
assessed on a simulated noisy speech database, compar-
ing it with existing techniques such as RNN, RNN-IRM, 
RNN-TCS, and ARN against the proposed WRNN. This 
evaluation focuses solely on the Wiener filter estimation 
without using any compensations to address concerns 
with the estimating accuracy or training convergence. 
According to the results, the findings enhance the statis-
tical-based WRNN by providing a reliable version that 
performs accurately in both synthetic and actual speech 
data. In terms of technological advancements, the results 
demonstrate that the proposed WRNN architecture is 
more effective at removing background noise.

The STOI parameter for testing model performance, 
considering babble noise from WSJ corpus, indicated 
that -5 dB and -2 dB SNR noise inputs achieved 92.1% 
and 94.9%, respectively, while the TIMIT dataset yielded 
85.4% and 91.5% for the same noise types. The PESQ 
parameter, also testing model performance with babble 
noise from the WSJ corpus, showed values of 2.98 and 
3.15 for -5 dB and -2 dB SNR noise inputs, respectively, 
while the TIMIT dataset produced values of 2.58 and 
2.91 for the same noise types.

While the proposed work compared causal and non-
causal approaches, the main objective of this work was 
to improve cross-corpus generalization and non-station-
ary noise removal. Comparing WRNN to existing meth-
ods, the number of parameters considered were greater, 
which has its own limitations. Future work will focus on 
evaluating the efficiency and computational complexity 
of the proposed model, including model compression 
and quantization, to optimize WRNN for practical ap-
plications. 

In the future, researchers will explore ways to en-
hance the WRNN framework for real-time and embed-
ded medical applications, such as hearing aids, mobile 
health monitoring systems, and telemedicine devices. 
These enhancements may include model compression, 
pruning, and quantization. Such improvements are de-
signed to reduce the time and resources required to run 
the program while maintaining high performance. Also, 
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the robustness of the proposed WRNN model can be 
evaluated using multilingual and biomedical corpora to 
ensure it performs effectively across different dialects, 
languages, and variations in physiological signals. Test-
ing the model on clinical and real-world medical datasets 
will further show its applicability for healthcare-related 
signal enhancement tasks and its reliability.
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