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ABSTRACT

Background: External factors can often interfere with speech, causing it to lose important components.
There are some problems with traditional algorithms and deep learning (DL) methods when it comes to
removing background noise from noisy signals, especially when conditions are unstable or non-causal.
The auto-associative property of the Wiener filter can be utilized to map distinguishing features such
as SNR estimation and the gain of input source waveforms or their spectra. Enhancing noisy speech
signals is essential in medical and assistive applications beyond traditional speech communication,
including hearing aids, telemedicine, speech-based pathological diagnosis, and biomedical acoustic
signal analysis. Improved intelligibility and clarity in these systems are crucial for accurate clinical
assessments and human-machine interaction in healthcare settings.

Methods: The proposed work introduces a fusion technique called the Wiener-based recurrent
neural network (WRNN), which integrates the Wiener filter with an enhanced variant of the
recurrent neural network (RNN) referred to as the bi-directional gated recurrent unit (Bi-GRU).
This hybrid model improves speech quality and eliminates background noise from noisy input
signals using both statistical filtering and temporal learning features.

Results: The proposed WRNN achieved the following results on babbling noise:
For the TIMIT dataset with the same type of noise, the scores were 85.4% and 91.5%.
For the PESQ parameter, babble noise from the WSJ corpus at -5 dB and -2 dB SNR yielded
scores of 2.98 and 3.15, respectively, while the TIMIT dataset with the same type of noise
resulted in scores of 2.58 and 2.91. In the evaluated settings, the WRNN consistently outperforms
baseline methods such as RNN, RNN-IRM, RNN-TCS, and ARN in both STOI and PESQ.

Conclusion: The suggested Wiener filter-Bi-GRU (WRNN) fusion framework demonstrates its capacity
to enhance speech signals in environments with non-stationary and non-causal noise. The model shows
significant promise for improving medical signals in addition to general speech enhancement. It can aid
in better understanding heart sounds, breathing signals, and pathological speech even in the presence of
substantial noise. The performance metrics examined—short-time objective intelligibility (STOI) and
perceptual evaluation of speech quality (PESQ)—validate the WRNN’s ability to maintain intelligibility
and perceptual quality in both synthetic and real-world environments.
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Introduction

ackground noise often distorts and hides
speech signals, making them difficult
to hear clearly. To address this problem,
speech enhancement techniques are used
to reduce overlapping noise and make
the speech clearer and more natural. The
main purpose of a speech enhancement
system is to reduce noise in a signal that has been con-
taminated. It works as a pre-processor for speech recog-
nition systems, making the speech signal cleaner without
changing the recognizer itself. These systems are crucial
for various applications, including voice-controlled de-
vices, audio restoration, automatic speech recognition,
hearing aids, and telecommunications.

The enhancement of distorted speech using additive
noise with a single observation has been accomplished;
however, it remains a tough issue. Noise is introduced
into the pristine speech sample to generate noisy speech
with an SNR ranging from 0 to 0.5 dB in increments of
0.01 dB. The proposed model is divided into two phas-
es: (i) Instruction and (ii) evaluation. During the train-
ing phase, the noise spectrum and signal spectrum are
derived from the noisy input signal using non-negative
matrix factorization (NMF). Subsequently, features from
the Wiener filter are recovered using empirical mean de-
composition (EMD) [1, 2]. This model integrates con-
volutional encoder-decoder and recurrent architectures
to proficiently train intricate mappings from chaotic
speech for real-time speech improvement, facilitating
low-latency causal processing. Recurrent architectures,
including long-short term memory (LSTM), gated recur-
rent unit (GRU), and simple recurrent unit (SRU), are
utilized as bottlenecks to capture temporal dependencies
and enhance the performance of speech enhancement.
The model utilizes convolutional layers to effectively
extract features from raw audio signals, along with layer
normalization and bidirectional gated recurrent unit (Bi-
GRUE ) to capture long-range temporal relationships and
contextual information from both preceding and subse-
quent frames. Substantial enhancements were observed
across five training epochs, with the training and valida-
tion loss decreasing from 311.9084 to 70.7906 and from
303.5839 to 46.6886, respectively. Speech augmentation
techniques have various applications, including hearing
aids, voice-controlled devices, cellular phones, automat-
ic speech recognition systems, and multiparty telecon-
ferencing.

There are various methods for filtering the distorted
signal. Each approach is distinct, considering numerous
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criteria and being specific to its application. In certain
instances, it may be necessary to enhance speech qual-
ity, while in others, accuracy is paramount; achieving
both quality and accuracy simultaneously within the
same timeframe is challenging [3-5]. However, there are
several limitations to spectrogram properties. The result-
ing signal contains artefacts as a result of the computa-
tionally intensive pre- and post-processing steps of the
discrete fourier transform (DFT)and its inverse. Second,
these techniques often only approximate the magnitude
in order to produce the increased speech. Most of the
research suggests that the phase can raise speech quality.
Adding a specific model for the phase component or an-
ticipating both magnitude and phase may add to model
complexity, according to a recent study.

This study aimed to investigate a critical research ques-
tion stemming from the challenges of speech enhance-
ment in highly non-stationary environments: whether
the proposed WRNN exhibits robustness in challenging
conditions, such as low SNR levels and fluctuating noise
amplitude or variance, in comparison to current state-of-
the-art techniques.

Related work

Numerous traditional algorithms play a major role in
acting as active noise cancellation (ANC) in speech ap-
plications, utilizing adaptive filters, Kalman filters, and
Wiener filters. These techniques are widely employed in
hearing aids and other edge devices, such as phones and
communication devices, while Wiener filtering adapts to
industry standards for dynamic signal processing. Con-
temporary smartphone designers frequently position two
microphones at different angles from one another: one
close to the speaker’s mouth to record loud speech and the
other to assess background noise and filter it out. Signals
that have been distorted by noise or other disturbances
can be improved or restored using the Wiener filter. It has
been extensively utilized in fields, including communica-
tions, audio signal improvement, and image processing.

The drawbacks of Wiener filter include the need for
separation of audio streams to effectively benefit from it.
In scenarios such as a cockpit or smartphone, while hav-
ing two microphones is useful, it would also be advanta-
geous to handle noise from a single stream. Additionally,
when the spectral properties of the audio and the back-
ground noise overlap, audible distortions in the speech
may occur. The filter’s subtractive design can eliminate
speech segments that resemble background noise. These
problems have been addressed with the support and de-
velopment of deep learning (DL) [6].
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RNN has never been used for waveform-based speech
augmentation; the first application was to denoise a
waveform that was not speech, and the second was
to increase speech bandwidth. The high resolution of
waveforms calls for networks that are broader, deeper,
and more expensive. Building a deep RNN is difficult
because saturated activation functions cause gradient
degradation over layers. Furthermore, our research in-
dicates that the size of the RNNs required for analyzing
high-resolution waveforms demands larger RAM [7].
This systematic review analyzed speech improvement
and recognition methodologies, focusing on denoising,
acoustic modeling, and beamforming. An overview of
various DL architectures, including deep neural net-
works (DNN), convolutional neural networks (CNN),
recurrent neural networks (RNN), long short-term
memory (LSTM) networks, and hybrid neural networks,
emphasizes their contributions to enhancement and rec-
ognition [8]. It introduces UnilnterNet, a unidirectional
information interaction-based dual-branch network de-
signed to facilitate noise modeling-assisted software
engineering without increasing complexity. The noise
branch still receives input from the speech branch to
enhance the accuracy of noise modeling. The findings
from noise modeling are then utilized to aid the speech
branch during backpropagation. This research presents
a complete framework for speech emotion recognition
that integrates the ZCR, RMS, and MFCC feature sets.

Our methodology utilized both CNN and LSTM net-
works, augmented by an attention model, to improve
emotion prediction. The LSTM model specifically tack-
les the issues of long-term dependency, allowing the
system to include prior emotional experiences in con-
junction with present ones [9, 10]. The Wiener filter is
used to process the noisy speech signals and produce
the clean speech targets. The RNN is then trained to use
for minimizing mean squared error (MSE) or perceptual
loss functions to decrease the difference between the tar-
get clean speech spectrum and the anticipated enhanced
speech spectrum. The advantages of both strategies can
be leveraged when the Wiener filter and RNN are used
together compared to leading-edge techniques such as
RNN-IRM [11], RNN-TCS [12], and RNN-ARN [13].
Studies have shown that advanced recurrent networks
(ARN) perform better than other methods, like RNNs
and dual-path ARNs, for improving speech in the time
domain. Many contemporary smartphones are equipped
with two closely positioned microphones. One micro-
phone is positioned near the speaker’s lips to capture
loud speech, while the other detects background noise
and filters it out [14, 15]. For sparse noise, which is
mostly very low frequency with high decibels, there is
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a chance that it may lead to noise-induced hearing loss,
necessitating the use of a hybrid algorithm to control its
occurrence [16].

In speech improvement tasks, the bi-GRU model is
frequently employed to improve the quality of voice sig-
nals by lowering background noise. It utilizes the mod-
el’s bidirectionality to gather information from the input
sequence’s past and future frames. The bi-GRU model
is used in speech enhancement to process noisy speech
signals in both forward and backward directions at the
same time. This approach helps capture long-term de-
pendencies and improves voice quality by enabling the
model to learn representations that combine data from
both previous and subsequent time steps.

Upon analyzing this approach, it was found that a deep
structured network finds it difficult to appropriately esti-
mate the infinte dynamic range of the SNR (—o0, o). For
this reason, a compression function was used to prevent
the convergence issues [17]. Moreover, SNR serves as a
transitional stage before acquiring the Wiener filter func-
tion, which is needed to feed the SE algorithm. There-
fore, the network’s ability to produce a more reliable
estimate of the Wiener filter through direct learning is
more practical.

The optimal use of the network for learning a robust
instance of the Wiener filter estimator is found based on
the properties of the speech enhancement algorithm’s in-
termediate phases, namely the SNR estimation and the
gain function [18-22]. This work presented a novel DL
model for sentiment analysis utilizing the IMDB movie
reviews dataset. This model executes sentiment classifi-
cation on vectorized reviews employing two Word2Vec
methodologies, specifically Skip Gram and Continuous
Bag of Words, over three distinct vector sizes (100, 200,
300), utilizing 6 bi-GRU and 2 convolutional layers
(MBi-GRUMCONYV). In the trials utilizing the suggest-
ed model, the dataset was divided into 80%-20% and 70-
30% training-test sets, with 10% of the training subsets
allocated for validation purposes.

Furthermore, it introduces a time-domain multi-chan-
nel Wiener filter algorithm for enhancing speech in
the distributed speech model, aimed at recovering pure
speech from observed speech. This paper initially pres-
ents the formula for the energy associated with noise re-
duction and speech distortion, subsequently formulates
the optimization problem concerning these factors, and
ultimately resolves the optimization problem to derive
the formula for the optimal linear filter. This work em-
ploys an iterative technique to estimate the autocorrela-
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tion matrix of the source speech signal, thereby enhanc-
ing estimation accuracy. The findings of the simulation
experiment indicate that the suggested approach outper-
forms numerous traditional multi-channel speech en-
hancement algorithms.

The problems identified in the traditional algorithm
have motivated the proposal of a design for a reliable au-
tomatic signal detection and recognition system, which
focuses on amplifying weak signals in the presence of
channel noise and background interference. The distin-
guishing features, like SNR estimation and gain of input
source waveforms or their spectra, can be mapped using
the auto-associative property of the Wiener filter.

The novelty of the proposed work lies in utilizing the
capabilities of Bi-GRU-based neural networks to create
filters that first learn and then subtract background noise
from the input waveform, thereby increasing the likeli-
hood of detecting weak signals. Practical challenges in
enhancing non-stationary and non-causal signals can be
effectively addressed by a WRNN that learns to selec-
tively filter out background noise without significantly
affecting the signal.. Furthermore, using different corpo-
ra with non-stationary noises under low SNR conditions,
in the presence of background noise and channel noise,
a novel base WRNN filter improves signal detectability
based on an analytical foundation.

Section 2 will explain the signal model and problem
formulation. This section includes a block diagram, as
well as discussions on pre-processing, noise removal,
and post-processing. Section 3 will discusse the simu-
lation results and provide a discussion on existing and
proposed techniques, followed by conclusions.

Figure 1. Workflow of the proposed model
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Methods
Signal model and problem formulation

Noise can easily mixed with speech signals in real-
world settings. Reverberations fall into two categories:
stationary noise (which does not change over time) and
non-stationary noise (which changes when shifted in
time). Examples of background noise in the non-sta-
tionary category include street noise, babble noise, train
noise, cafeteria noise (from other speakers’ voices), and
instrumental sounds.

Block diagram of the proposed work

The proposed WRNN Model consists of three stages,
namely pre-processing, noise reduction, and speech en-
hancement in post-processing, as shown in Figure 1.

Noisy speech input

A noisy speech signal—which includes both speech
and undesired background noise—is used to initiate the
procedure. The system’s objective is to improve voice
quality by lowering noise levels.

Short-time fourier transform (STFT)

STFT is used to transform the time-domain loud speech
into the time-frequency domain. To examine frequency
components over time, STFT splits the signal into tiny
frames and uses the Fourier transform. This facilitates
the separation of speech and noise components.

Wiener filter

The Wiener filter is a traditional technique for reducing
noise. It operates by minimizing the mean square error

LAl
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Figure 2. Block diagram of the WRNN model

between the real and estimated clean signals. This block
creates a spectrogram with reduced noise and provides
initial noise suppression.

Bi-GRU layers (layers 1 & 2)

Following Wiener filtering, the features are fed into
sophisticated RNN called Bi-GRU. In order to improve
speech feature representation, Bi-GRU layers 1 and 2
progressively process information from both past and
future contexts. This improves the ability to distinguish
speech from noise and aids in modeling temporal con-
nections.

Fully connected layer

A completely connected layer receives the processed
features from the Bi-GRU layers. This layer maps the
high-level learned features into the necessary format
(e.g. predicted clean speech magnitude spectrogram).
Essentially, it serves as a decision-making stage to com-
plete the enhancement.

Inverse short-time fourier transform (ISTFT)

ISTFT is used to transform the improved spectrogram
back into the time-domain waveform. The improved
voice signal is reconstructed in this manner.
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LLras)
Enhanced speech output

The outcome is a clearer speech signal with diminished
background noise and enhanced intelligibility.

Figure 2 depicts the proposed block diagram for speech
enhancement with background non-sationary noise reduc-
tion. In a pre-processing stage, initially noisy data will un-
dergo short-term windowing techniques, and this output
will be applied to the STFT to obtain the phase and mag-
nitude response. In second stage, which is the noise reduc-
tion stage, the Wiener filter function is used to calculate
the gain factor and SNR estimation for the input features
before moving to the post-processing stage. In the third
stage, ISTFT is initially applied using an overlap-add con-
volution method to extract input features for the Bi-GRU-
based RNN model, which is designed to remove non-sta-
tionary noise components from noisy speech. The detailed
stage-wise explanation follows in the next section.

Pre-processing and database

To develop an accurate noise removal model, creating
a high-quality training dataset is crucial. In this case, the
TIMIT and WSJ databases were used to obtain clean
speech and noisy speech data. These two databases were
combined to create a larger dataset comprising a total of
7.5 hours of speech. The dataset was then split into sepa-
rate portions: 60% for training, 20% for development,
and 20% for testing.
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During the construction of the dataset, certain consider-
ations were taken into account. Firstly, the ratio of male
to female speakers was balanced to ensure a diverse rep-
resentation of voices. Additionally, it was ensured that
there is no overlap of speakers between the different
groups. This helps maintain the independence of the data
subsets and prevents any bias that could arise from hav-
ing the same speaker present in multiple sets.

The inclusion of both clean speech and its correspond-
ing noisy counterpart in the dataset is essential because
the objective is to reduce background noise. The nature
of the dataset should align with the specific use case of
the model being developed. For instance, if the model
is intended to be used for noise removal in signals from
a helicopter pilot’s microphone, it would be logical to
train the network using auditory samples corrupted by
rotor noise.

On the other hand, for a noise removal model intended
for widespread use, incorporating authentic background
noises, such as air conditioning, typing, dog barking,
traffic, music, and loud conversations would be reason-
able. The optimum way to use the network for learning a
reliable Wiener filter estimator is defined by the proper-
ties of the speech enhancement algorithm’s intermediate
phases, namely the gain function and SNR calculation.
Studies demonstrate that the robustness of the statistical-
based speech estimator technique stems from the data-
driven learning process of the SNR estimator, resulting
in high performance.

In the Equation 1:
1. y(n) = x(n) +d(n)

where “x(n)” represents clear speech, “d(n)” stands for
additive noise, and “n” represents the discrete-time index,
the observed noisy speech signal is denoted as “y(n)”.
To begin the pre-processing stage for speech enhance-
ment in the spectral domain, the observed noisy speech
signal “y(n)” is segmented into overlapping frames us-
ing a window function. This segmentation facilitates the
analysis of the speech signal over shorter time intervals
and captures the temporal characteristics of the signal.
Following the segmentation, a STFT is applied to each
frame. The STFT computes the spectrum representation
of the signal by taking the Fourier transform of each
frame. This transformation converts the speech signal
from the time domain to the frequency domain, provid-
ing information about the spectral content of the signal
at different frequencies. The STFT representation of the
segmented frames can be represented as a matrix, where
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each column represents the frequency content of a spe-
cific frame. This matrix can be further processed using
various speech enhancement techniques to decrease or
eliminate the noise component and improve the excel-
lence of the speech signal.

N-1 (20 e
2 ¥ = ag+ Yy + 1Dk )"
n=0

In the spectral-domain speech estimator method, as
shown in Equation 2, various steps are involved. The
equation includes the time frame index I, the analytical
window size y(n), and the number of samples between
two frames denoted as Nand M. The input for the noise
reduction block is the power spectrum, represented as
|Y(k',1)]|? , where I’ is the time frame index and k' is
the frequency frame index. The spectral phase is sepa-
rated in the last post-processing step to facilitate voice
reconstruction. The output of the system is an enhanced
version of the noisy signal that closely resembles clear
speech to the extent possible. The central block in the
figure represents the core component of the enhance-
ment technique. This concept is shared by the family of
spectral-domain speech estimator methods.

However, it is important to note that in this particular
instance, both the presence and absence of speech are
considered separately. The filter gain function that modi-
fies the power spectrum, denoted as |V (k',1)]? , is deter-
mined using the gain of the minimum mean square error
(MMSE) estimator, known as G, ... The G,, . gain
is based on the likelihood that speech is present in the
signal. The spectral-domain speech estimation method
calculates the filter gain function using various factors
and techniques as Shown in Figure 3.

Noise simulation

To examine the effects of both variance and amplitude
changes in background noise, controlled noise simula-
tion was carried out in addition to using normal clean
and noisy datasets. Gaussian and babbling noise samples
with different noise strength levels were created for this
purpose. A range of SNR circumstances (—5 dB, -2 dB, 0
dB, and +5 dB) were simulated by scaling the magnitude
of the noise components. Likewise, variance scaling was
used to simulate time-varying noise energy fluctuations.
This provided us with the opportunity to investigate how
the WRNN responds to abrupt and arbitrary variations
in noise levels.

R A, et al. Speech Enhancement Using a Wiener Filter-Bi-GRU Hybrid Model. JRH. 2025; 15(Special Issue: Artificial Intelligence):761-778.
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Figure 3. Schematic comparison

Noise reduction stage (wiener filter)

Wiener filtering is widely used as a standard dynamic
signal processing technique in hearing aids and other
auxiliary devices, like phones and communication
equipment. It is an adaptive filter that performs opti-
mally when provided with two audio signals - one con-
taining both speech and background noise, and the other
measuring only the background noise. Modern smart-
phones often incorporate two microphones placed at a
distance from each other. One microphone is positioned
near the speaker’s lips to capture the speech, which may
be accompanied by noise, while the other microphone is
dedicated to monitoring the background noise, enabling
effective noise filtering.

Because it can anticipate and reduce noise, the Wiener
filter is essential for both noise removal and augmen-
tation. There are difficulties when integrating Wiener
filters into big communication systems, including hard-
ware needs and power consumption. The performance
of the system was improved by employing the pipelined
method. The proposed Wiener filter addressed iteration
issues encountered in traditional designs by replacing the
division operation with an effective inverse and multipli-
cation operation. The architecture for matrix inversion
was also redesigned to reduce computational complex-
ity. Consequently, we directly expressed the Wiener fil-
ter’s gain function as Equation 3:
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Where é/ g 18 the computed a priori SNR for each
frequency k bin and time slice 1.

For each variance of a spectral component, the gain
function in the SS approach is, for example, defined as
the square root of the maximum likelihood estimator.
This can be explained by G as (B =2) (Equation 4):

MMSE

4. Gs (k',l') = \ﬂ/ GMMSE

Regarding changes to this algorithm, several modifica-
tions have been researched. The a priori and a posteriori
SNR are widely used to describe traditional speech en-
hancement algorithms. The a priori SNR is calculated
using the PSD of the noise signal and the clean speech
(Equation 5):

' 1

5. é’(k!)l!) — ?(zvﬁil)

a (51

Where P,(k'.I')=E[ X(k',I')['] represents the clean
speech PSD, P,(k',I')=E[ D(k',I')|'] refers to is the
noise signal PSD, both in frequency bin k. The noise sig-
nal PSD and the noisy spectral power determine the a
posteriori SNR (Equation 6).

o P
oYk =
d )
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As we can see, the a posteriori SNR may be derived uti-
lizing the noisy spectral power along with an estimate of
the PSD of the noise. To determine the noise spectrum,
numerous statistical algorithms have been proposed.
For instance, minima controlled recursive averaging
(MCRA), minimal statistics, and histogram-based tech-
niques, among others. Artificial neural networks, once a
novel idea, have recently gained traction as DL. Despite
the existence of various DL techniques for noise remov-
al, they all operate by learning from training samples.
Within the framework of the traditional spectral-domain
speech estimator algorithm, the proposed work suggests
a Wiener filter estimator for voice augmentation based
on DL. The optimal use of the network for learning a
robust version of the Wiener filter estimator is deter-
mined by the properties of the intermediate phases of the
speech enhancement algorithm, namely SNR estimation
and the gain function. Experiments demonstrate that em-
ploying data-driven learning of the SNR estimator yields
state-of-the-art performance and provides resilience to
the statistically-based voice estimator technique.

Post-processing (speech enhancement)

The post-processing stage proposes a solution to ad-
dress the challenges by combining a GRU with learned
speech features along with an adaptive Wiener filter. The
main contributions of the proposed work can be sum-
marized as follows:

(1) Modified wiener filter: The proposed work designs
a modified version of the Wiener filter for decomposing
the speech spectral signal to enhance the performance
of speech by effectively separating the speech and noise
components.

(i1) Introduction of Bi-GRU model: The Bi-GRU mod-
el is introduced to accurately estimate the tuning factor
of the Wiener filter for each input signal. As a type of
RNN, the Bi-GRU is capable of learning and capturing
the temporal dependencies of the speech signal, which
helps in determining the appropriate tuning factor for
noise reduction.

(iii) Training with extracted features: The modified
Wiener filter is used to train the GRU model by utilizing
the extracted features obtained from the trial phase of the
process called empirical mode decomposition (EMD).
EMD captures relevant information about the speech
and noise components that are used as input for the Bi-
GRU model during the training phase. By combining
the modified Wiener filter, the Bi-GRU model, and the
extracted features from EMD, the proposed work aims
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to strengthen the accuracy and effectiveness of speech
enhancement by dynamically adapting the Wiener filter
based on the input signal characteristics.

For the voice augmentation challenge, advancements
in DL have achieved excellent results, demonstrating
the removal of background noise, including dog bark-
ing, kitchen noise, music, babbling, traffic, and outdoor
sounds. The novelty of the proposed work lies in its ef-
fectiveness in attenuating both quasi-stationary and non-
stationary noise compared to conventional statistical sig-
nal processing methods.

When the measured signal is minimally influenced by
noise or is predominantly clean, the dynamic range of
the SNR may increase due to the potential values used as
outcomes, making regression more susceptible to errors
in this situation. However, due to the influence of SNR
on the G, (Equation 7), high SNR conditions produce
substantial gain values with G, .. approaching 1, while
low SNR conditions result in G, ;.. approaching 0. As
a result, the dynamic range needed to achieve regression
for the G, would be bounded between [0, 1], making
it a task that a deep structured network is better equipped
to perform.

1
1

1+——
SNR

7.G

MMSE

Another factor that contributed to the choice of a deep
structured network for this purpose was its ability to cre-
ate a causal augmentation system. This implies that it can
be utilized in online applications since it is not dependent
on future time frames. The network also employs non-re-
cursive estimating techniques to prevent the propagation
of estimation errors from earlier frames. The previously
stated statistical SNR-estimators often rely on recursive
(feedback system) and causal algorithms.

The suggested RNN-based noise reduction technique is
illustrated in Figure 4. The deep structured network was
trained in a supervised manner using both noisy audio
samples and clean audio samples as inputs. The objec-
tive of the network was to accurately predict the MMSE
gain from the noisy signal based on Equations 2 and 4.
To achieve this, the network needs to be aware of the
power spectral density (PSD) of the noise, denoted as
Py (k',I') | and the PSD of the clean speech, denoted as
P.(k',I'), during the training process. These PSDs are
estimated using the Welch approach, which is a com-
monly used method for PSD estimation.
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Figure 4. Gated recurrent unit model

Bi-GRU model

RNNs are capable of handling sequential data. As
they work with the current data, RNNs can also retain
knowledge from earlier data. The GRU is a less com-
plex version of the GRU, both of which are enhanced
RNN models with potent modelling skills for long-term
dependencies [20]. A reset gate and an update gate make
up a GRU unit. Under the direction of these two gates,
the output h, is governed by both the present input and
the preceding state h(t—1). The outputs of the gates and
the GRU unit are calculated using Equation 8.

r,=oW.x,+U, h_, +b,)

ritt—1
=ocW_x,+U_h, , +b,)

t z -1

8. h, = tanh(W,x, +U, (r,®h,_, +b,)
h

=(—-z)®h,_ +z,®h,

Where W, U, W _,U W, and U, are the weight matri-
ces,and b b , and b, are the bias vectors. Equation 7 rep-
resents the equations used in the GRU model, where xt is
the input at time step t, h _, is the previous hidden state,
and r,,z, and ht are the update gate, reset gate, and cur-
rent hidden state, respectively, at time step t. The update
gate 1t controls how much of the previous hidden state
should be considered for the current time step, while the
reset gate z_ determines how much of the previous hid-
den state should be ignored. These gates are computed
using the logistic sigmoid function . The hidden state
h, is computed based on the input , the previous hidden
state h_, and the update and reset gates. The Hadamard
product, & , is used to combine the input and the previ-
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ous hidden state with the update gate, and the hyperbolic
tangent function (tanh) is applied to obtain the current
hidden state.

When working with sequential data, models with a bi-
directional structure have the capability to learn infor-
mation from both past and future data points. Figure 5
illustrates the structure of the bi-GRU model. It consists
of two GRUs, one moving forward and the other moving
backward. The first GRU processes the input sequence
from the beginning to the end, capturing the dependen-
cies in the forward direction. The second GRU processes
the input sequence in reverse, starting from the end and
moving toward the beginning, capturing the dependen-
cies in backward direction [21]. By combining the out-
puts of the forward and backward GRUs, the bi-GRU
model incorporates information from both past and fu-
ture contexts, allowing it to have a more comprehensive
understanding of the input sequence at each time step.

9. Zt = GRUfwd(xtvzt—l)

10. Zt = GRUpwa (xtjltﬂ)

-

11. ht th('B(}_lt

In Equation 9, %, is represented by the state of the
forward GRU, similarly Equation 10, Ry is reprsented
by the state of the backward GRU and Equation 11 is
represented by overall i.e Bi-diectional GRU states and

indicates the operation of concatenating two vectors.
In the Equations 9, 10 and 11, GRU_ , represents the
hidden state of the forward GRU at time step t, GRU,
represents the hidden state of the backward GRU at time
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Figure 5. Bi-GRU-based RNN network

step t, and x_ is the input at time step t. Additionally, Tes
and t,_; represent the hidden states of the forward and
backward GRUs from the previous and subsequent time
steps, respectively. The output of the bi-GRU at each
time step, h,, is a concatenation of the forward and back-
ward hidden states, providing a richer representation that
incorporates information from both directions.

The G, Was calculated using a GRU-based RNN
design with multiple inputs based on 1-dimensional con-
volutions. The MATLAB tool was utilized to generate
the patterns. The front end of the system employed a set
of speech representations computed on a 25 ms Ham-
ming window frame with a 10 ms overlap.

This included calculating a 512-dimensional FFT, 32
Mel filter banks, and 32 cepstral features. These features
were then stacked to create a single input feature vector
for the network for each frame slice. To normalize the
input data, the mean and variance of the training samples
were used. During the training process, input features
were generated on the fly, which allowed the system to
compute mask predictions for each time-frequency area
in a single forward pass while calculating the average
loss to determine the gradients. For training the network,
each audio file in the training set was divided into two-
second segments, equivalent to 200 frames. A batch of
32 of these segments was then used to train the network.
During the evaluation phase, the mask inference was
computed for each speech in the evaluation group.

To train a deep neural network, a 1-D CNN was em-
ployed to classify the sequence data and learn its features
by applying sliding convolutional filters to the 1-D input.
Because convolutional layers can process the input in a
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single operation, employing 1-D convolutional layers
can potentially be faster than utilizing recurrent layers.
Recurrent layers, on the other hand, have to repeat across
the input’s time steps. The normalized molecular prop-
erty of the sequence data was then extracted using a 1D
CNN. Moreover, temporal characteristics were retrieved
from the extracted data using GRU layers. The system’s
design comprised five Bi-GRU blocks, each with an in-
creasing number of channels. The specific details of the
network dimensions of the architecture used for estimat-
ing G are provided in Table 1.

MMSE

Applications of WRNN in medical signal en-
hancement

The suggested WRNN model had significant potential
for processing medical signals, particularly for eliminat-
ing noise in biomedical acoustic signals such as phono-
cardiograms and respiratory sounds. In telemedicine and
assistive hearing applications, environmental and physi-
ological noise can obscure clinically significant charac-
teristics. By effectively removing non-stationary noise
components, the hybrid WRNN framework can enhance
these signals, making automated analysis systems more
reliable for diagnosis. Furthermore, the proposed mod-
el’s ability to maintain speech clarity while reducing dis-
tortion is highly beneficial for real-time monitoring and
communication with patients in speech-based pathologi-
cal assessments and hearing aids.
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Tonsnal of Rocaasch £ _Hoalth
UUuUl 11dil Ul AN D VAL vl Adveinil

2025. Volume 15. Special Issue: Artificial Intelligence

Table 1. Architeture of the network dimensions and channel estimating for GMMSE calculation

Layer Kernel Size Dilation rate Input Dimention Output Dimention
First Block with 4 Bi-GRU 6 4 256 256
Second Block with 4 Bi-GRU 4 3 256+256 512
Third Block with 4 Bi-GRU 4 2 256+512 768
Fourth Block with 4 Bi-GRU 3 2 256+768 1024
Fiveth Block with 4 Bi-GRU 2 1 256+1024 1024
Output Layer - - 256+1024 256
Ly

Results

Simulation results

Figure 6 shows the training progress response for the
WRNN model. Table 2 provides the hyperparameters
and settings for the proposed model. The maximum
number of iterations for the training session was 2,319,
with 3 epochs observed and 773 iterations per epoch.
The first response represents iteration versus RMSE,
while the second represents iteration versus loss. During
the training process, epoch 1 showed a significant dif-
ference in RMSE and loss, while epoch 2 showed a de-
caying trend with stability in epoch 3, reaching minimal
RMSE with zero loss in both the training and validation
processes at the final stage.

The speech data was chosen randomly from the test set,
and both the suggested and current techniques were used
to assess the background noise of babble noise with SNR
Table 2. Hyperparameters

values of -5 dB & -2 dB. Figure 7 displays voice spectro-
grams before and after WRNN-based speech improve-
ment processing. There were four subplots, namely clear
speech, noisy speech, normal RNN, and WRNN. In con-
trast to the RNN module, the residual noise components
of the WRNNs were nearly equal to the original clear
speech, while the improved speech spectra were blurred
along both the time and frequency axes.

The time domain graph of clean speech, noisy speech,
output speech from the RNN module, and output speech
from the WRNN module is shown in Figure 8. It is clear
that the module WRNN supressed almost all the noise
components, resulting in an enhanced speech output
compared to the existing RNN module.

Figure 9 shows STOI (%) of the existing and proposed
WRNN model tested with the WSJ and TIMIT corpora.
The bar graph indicated the -5 dB and -2 dB SNR input
noise levels. From the test results, it has been observed

Parameter Value/Setting
Optimizer Adam
Learning rate 0.0003
Batch size 32
Loss function MSE
Hidden units (Bi-GRU) 256
Dropout rate 0.2
Epochs 100
Framework/version PyTorch 2.2
Total trainable parameters =2.14 million

MSE: Mean squared error.
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Figure 6. WRNN training progress

that the proposed WRNN model achieves better results
compared to the existing four types. Figure 10 displays
the PESQ of the existing and proposed WRNN model
tested with the WSJ and TIMIT corpora.
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Table 3 shows the STOI and PESQ performance of both
non-causal existing methods and the proposed method
with different types of noise across different corpora. For
testing the models, we chose babble and cafeteria noise
at -5 dB and -2 dB. Additionally, the same noisy signals
were selected from different dataset corpora, such as
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Figure 7. Spectrogram of clean speech, noisy speech, output speech from the RNN module, and output speech from the

WRNN module
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Figure 8. Time domain graph of clear speech, noisy speech, output speech from RNN Module, and output speech from the
WRNN module

WSIJ and TIMIT. We compared the performance of the considered babble noise from the WSJ corpus, where the
RNN and WRNN algorithms alongside RNN-IRM [11], input at -5 dB and -2 dB SNR achieved scores of 92.1%
RNN-TCS [12], and ARN [13]. Observations indicate and 94.9%, respectively. For the TIMIT dataset with the
that the WRNN produces excellent results compared to same type of noise, the scores were 85.4% and 91.5%.
the other models. To measure the STOI parameter, we

Table 3. STOI and PESQ Performance between non-causal wrnn and other approaches

Noise Type Babble Cafeteria
Dataset Corpus wsJ TIMIT WSJ TIMIT
SNR (dB) -5 2 5 2 -5 ) -5 2
RNN 82.5 86.8 75.3 819 79.8 85.1 74.5 80.6
RNN-IRM [11] 83.7 88.4 76.3 83.3 81.9 86.9 76.3 82.3
STOI (%) RNN-TCS [12] 88.1 92.2 79.3 87.5 85.8 90.3 80.4 86.6
ARN [13] 91.1 94.1 84.5 90.6 88.3 92.1 82.7 88.6
WRNN 92.1 94.9 85.4 91.5 89.1 93.1 83.6 89.8
RNN 2.46 2.75 2.21 24 221 2.56 2.15 24
RNN-IRM [11] 2.51 2.82 2.27 2.6 2.49 2.76 231 2.57
PESQ RNN-TCS [12] 2.63 2.89 2.22 2.59 2.52 2.76 2.26 2.53
ARN [13] 2.82 3.04 243 2.78 2.64 2.87 2.36 2.65
WRNN 2.98 3.15 2.58 291 2.82 2.99 2.51 2.82
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Figure 9. STOI (%) of the existing and proposed model tested with WSJ and TIMIT corpora

Table 4 shows the STOI and PESQ performance of
causal existing methods compared to the proposed
method with different types of noise across various
corpora. For testing the models, we again chose babble
and cafeteria noise at -5 dB and -2 dB. Also, the same
noisy signals were selected from different dataset cor-
pora, like WSJ and TIMIT. Similarly, we tested another
noise pattern, cafeteria noise, which also demonstrated
a comparable improvement when compared with exist-
ing models. Additionally, we measured another speech
quality test parameter, PESQ. For the PESQ parameter,
babble noise from the WSJ corpus at -5 dB and -2 dB

Figure 10. PESQ of the existing and proposed model tested with WSJ and TIMIT corpora
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SNR yielded scores of 2.98 and 3.15, respectively, while
the TIMIT dataset with the same type of noise resulted in
scores of 2.58 and 2.91.

In this work, computational complexity was measured
as the number of MACs per sequence lenths (T). The
computational cost increased almost linearly with T
for all models as shown in Figure 11. A moderate com-
plexity profile was displayed by the WRNN Bi-GRU,
which is lower than more complicated architectures, like
DPARN and ARN but higher than lightweight models,
like DCN, RNN-IRM, and RNN-TCS. Importantly, our

Ll
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Table 4. STOI and PESq performance between causal WRNN and other causal approaches to speech enhancement

Noise Type Babble Cafeteria
Dataset Corpus WSJ TIMIT wsJ TIMIT
SNR (dB) -5 2 -5 2 -5 2 -5 2
RNN 82.3 85.2 72.8 80.2 76.7 83.5 73.2 78.2
RNN-IRM [11] 83.1 86.4 75.1 81.1 80.2 85.7 75.1 81.4
STOI(%) RNN-TCS [12] 87.8 90.8 76.9 84.2 829 88.3 79.4 85.1
ARN [13] 90.1 92.1 82.5 89.6 86.8 90.3 80.7 86.2
WRNN 91.3 92.8 84.2 90.3 87.8 91.6 82.1 87.9
RNN 2.38 2.69 2.17 2.35 2.18 2.51 2.12 2.38
RNN-IRM [11] 2.45 2.77 2.15 2.42 244 2.72 2.28 2.52
PESQ RNN-TCS [12] 2.55 2.82 2.21 2.47 2.48 2.70 2.21 2.49
ARN [13] 2.72 3.00 2.38 2.65 2.61 2.83 2.32 2.61
WRNN 291 3.11 2.52 2.84 2.79 2.95 2.49 2.78
LLED L

primary results (STOI and PESQ) demonstrate that the
WRNN achieves this balanced complexity while provid-
ing greater intelligibility and quality benefits.

Discussion

The outcomes of this research demonstrated the ef-
ficiency of the proposed WRNN framework for voice

Figure 11. Comparison of computational complexities for all models employed in this research

improvement in noisy environments. By utilizing both
data-driven learning and statistical priors, the hybrid de-
sign greatly enhanced intelligibility and perceptual qual-
ity in comparison to traditional statistical techniques, like
the standalone Wiener filter. While the Wiener filter of-
fers reliable SNR estimates that maintain performance in
low-SNR and non-stationary noise scenarios, the Bi-GRU
network records temporal dependencies between frames.
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The proposed WRNN model exhibited better perfor-
mance in the removal of non-stationary and non-causal
noise across the TIMIT and WSJ datasets; however, cer-
tain constraints exist. First, the evaluation was limited
to two datasets, which might not accurately reflect the
variety of acoustic characteristics found in real-world
settings, such as low-resource languages or extremely
reverberant surroundings. Second, without additional
optimizations, like pruning or quantization, the direct
application of the model in real-time or embedded sys-
tems is limited due to its comparatively higher complex-
ity compared to traditional statistical techniques, which
may result in increased computational costs and latency.
Third, babbling noise was the primary focus of the ex-
perimental setup; further research is needed to assess
performance against other challenging noise types, such
as impulsive noise and mechanical interference. Lastly,
although the Bi-GRU enhances temporal modeling, it is
less effective than more recent transformer-based sys-
tems at capturing long-range dependencies. Future work
will address these limitations by including a variety of
noise types, expanding the evaluation to additional data-
sets, and investigating lightweight architectures for real-
time deployment.

Even though the existing WRNN architecture success-
fully enhances speech by combining Wiener filtering
and Bi-GRU, more advanced temporal modeling tech-
niques could be advantageous for future developments.
Integrating attention mechanisms to allow the model
to selectively focus on informative temporal frames or
spectral regions is one promising approach that could
enhance performance in extremely dynamic noise envi-
ronments. Furthermore, using transformer-based designs
might improve the system’s capacity to recognize con-
textual linkages and long-range dependencies in speech
sequences. Transformers may offer a more adaptable
representation framework than recurrent models and
have shown impressive performance in sequential data
modeling across a variety of speech and audio chal-
lenges. The interpretability of the learnt representations,
generalization across datasets, and noise robustness may
all be enhanced by incorporating these methods into the
WRNN framework. Moreover, hybrid systems that com-
bine adaptive Wiener filtering with temporal self-atten-
tion may provide the optimal balance between enhance-
ment quality and computational efficiency.

Conclusion

The proposed work used fusion technique to remove
the background noise for non-stationary and non causal
signals. In this work, two spectral domain speech esti-
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mators were examined using the Weiner estimator fol-
lowed by an RNN to improve speech quality, adhering
to the traditional speech augmentation processing par-
adigm. The collected findings showed that despite the
RNN introducing very little distortion, the system based
on the WRNN offered the best balance between speech
augmentation in terms of quality measures and signal
distortion.

The method’s speech enhancement performance was
assessed on a simulated noisy speech database, compar-
ing it with existing techniques such as RNN, RNN-IRM,
RNN-TCS, and ARN against the proposed WRNN. This
evaluation focuses solely on the Wiener filter estimation
without using any compensations to address concerns
with the estimating accuracy or training convergence.
According to the results, the findings enhance the statis-
tical-based WRNN by providing a reliable version that
performs accurately in both synthetic and actual speech
data. In terms of technological advancements, the results
demonstrate that the proposed WRNN architecture is
more effective at removing background noise.

The STOI parameter for testing model performance,
considering babble noise from WSJ corpus, indicated
that -5 dB and -2 dB SNR noise inputs achieved 92.1%
and 94.9%, respectively, while the TIMIT dataset yielded
85.4% and 91.5% for the same noise types. The PESQ
parameter, also testing model performance with babble
noise from the WSJ corpus, showed values of 2.98 and
3.15 for -5 dB and -2 dB SNR noise inputs, respectively,
while the TIMIT dataset produced values of 2.58 and
2.91 for the same noise types.

While the proposed work compared causal and non-
causal approaches, the main objective of this work was
to improve cross-corpus generalization and non-station-
ary noise removal. Comparing WRNN to existing meth-
ods, the number of parameters considered were greater,
which has its own limitations. Future work will focus on
evaluating the efficiency and computational complexity
of the proposed model, including model compression
and quantization, to optimize WRNN for practical ap-
plications.

In the future, researchers will explore ways to en-
hance the WRNN framework for real-time and embed-
ded medical applications, such as hearing aids, mobile
health monitoring systems, and telemedicine devices.
These enhancements may include model compression,
pruning, and quantization. Such improvements are de-
signed to reduce the time and resources required to run
the program while maintaining high performance. Also,
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the robustness of the proposed WRNN model can be
evaluated using multilingual and biomedical corpora to
ensure it performs effectively across different dialects,
languages, and variations in physiological signals. Test-
ing the model on clinical and real-world medical datasets
will further show its applicability for healthcare-related
signal enhancement tasks and its reliability.
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