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Explainable Epileptic Seizure Detection from 
Electroencephalography Signals via CNN–Bi-LSTM 
Attention Hybrid Model

Background: Epilepsy is a chronic neurological disorder marked by recurrent daily seizures 
that threaten patient safety. Electroencephalography (EEG) is a crucial neuroimaging tool for 
epilepsy diagnosis, but manual interpretation of EEG signals is challenging for clinicians. To 
assist specialists, automated systems, such as computer-aided diagnosis systems (CADS) based 
on deep learning (DL) are essential. 

Methods: The proposed CADS system was validated using the Turkish epilepsy dataset. 
In preprocessing, EEG signals were filtered, down-sampled, re-referenced using common 
average reference (CAR), and segmented into multiple temporal windows. A new feature 
extraction framework combining one-dimensional convolutional neural networks (1D-CNN), 
bidirectional long short-term memory (Bi-LSTM), and an attention mechanism was developed. 
All experiments were performed using 5-fold cross-validation. Post-hoc explainability was 
evaluated using explainable artificial intelligence (XAI) techniques, including t-distributed 
stochastic neighbor embedding (t-SNE) and shapley additive explanations (SHAP).

Results: The proposed CADS achieved a seizure diagnosis accuracy of 99.49%, demonstrating 
high robustness across the validation folds, with minimal variance between folds (±0.12%). 
Feature space visualization confirmed clear class separation, and SHAP analysis provided 
clinically meaningful explanations for model decisions.

Conclusion: The proposed DL architecture shows strong potential for reliable and interpretable 
automatic epileptic seizure detection from EEG. This CADS can significantly reduce the 
diagnostic burden on clinicians and support real-time decision-making in clinical environments.

Keywords: Epileptic seizures, EEG signals, Deep learning (DL), Attention mechanism, t-SNE, 
SHAP

A B S T R A C T

Citation Barzegar MM, Ahmadi Daryakenari N, Khodatars M. Explainable Epileptic Seizure Detection from Electroen-
cephalography Signals via CNN–Bi-LSTM Attention Hybrid Model. Journal of Research & Health. 2025; 15(Special Issue: 
Artificial Intelligence):779-792. http://dx.doi.org/10.32598/JRH.15.specialissue.2892.1

 http://dx.doi.org/10.32598/JRH.15.specialissue.2892.1

Use your device to scan 
and read the article online

Article info:
Received: 20 Nov 2025
Accepted: 29 Nov 2025
Publish: 31 Dec 2025

Copyright © 2025 The Author(s); 
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: https://creativecommons.org/licenses/by-nc/4.0/legalcode.en), 
which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

https://orcid.org/0009-0002-7934-8204
https://orcid.org/0009-0002-9531-6341
https://orcid.org/0000-0002-8517-0046
mailto:khodatars1marjane@gmail.com
http://jrh.gmu.ac.ir/
http://dx.doi.org/10.32598/JRH.15.specialissue.2892.1
https://crossmark.crossref.org/dialog/?doi=10.32598/JRH.15.specialissue.2892.1
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en


780

2025. Volume 15. Special Issue: Artificial Intelligence

Introduction

pilepsy is a chronic neurological disorder 
characterized by frequent seizures due to 
abnormal electrical activity in the human 
brain [1]. The World Health Organiza-
tion (WHO) has reported that more than 
50 million people worldwide suffer from 
epileptic seizures [1]. According to this re-

port, epileptic seizures are the third most common brain 
disorder, following stroke and Alzheimer’s disease (AD) 
[1, 2]. These seizures negatively affect the human ner-
vous system and lead to various challenges in the daily 
lives of patients, such as movement disorders, lack of 
bladder control, and loss of consciousness [2, 3]. Such 
issues can be very dangerous for individuals with epi-
lepsy, potentially resulting in paralysis, fractures, or even 
death [3]. Due to their unpredictability, epileptic seizures 
often lead to fear, anxiety, stress, and a decrease in pa-
tients’ self-confidence [3]. Specialists believe that diag-
nosing epileptic seizures in their early stages can help 
treat over 70% of affected individuals [4]. 

Electroencephalography (EEG) is one of the most well-
known methods for diagnosing epileptic seizures among 
specialist doctors [2-4]. EEG records brain activity dur-
ing epileptic seizures from the scalp non-invasively [1]. 
In addition, EEG recording is very popular among neu-
rologists and researchers due to its low cost and easy 
portability compared to other neuroimaging modalities 
[3]. EEG measures electrical currents in the dendrites of 
neurons that are close to the surface of the cerebral cor-
tex with high resolution [4]. Currently, specialist doctors 
visually extract information from EEG signals to diag-
nose epileptic seizures. In this process, neurologists can 
diagnose the condition based on important information 
in EEG signals, including spikes, sharp waves, and slow 
waves [5]. Therefore, this method is highly dependent on 
the experience of doctors specializing in the analysis of 
EEG signals [5].

Visual analysis of EEG signals is always challenging 
for neurologists due to the variety of epileptic seizures. 
Additionally, EEG signals are usually recorded under 
different conditions, such as with EEG devices that have 
different sampling frequencies, along with various ar-
tifacts from patients. This variability makes it difficult 
to diagnose epileptic seizures accurately. Misdiagnosis 
of epileptic seizures by specialist doctors can cause ir-
reparable damage to patients [4, 5]. For example, epilep-
tic seizures are generally classified into two categories: 
focal and generalized [6]. Misdiagnosis of the type of 
epileptic seizure can lead to the prescription of inappro-

priate medications, which may result in drug-resistant 
epilepsy and, ultimately, death [4, 5]. Therefore, diag-
nosing epileptic seizures at their early stages from EEG 
signals is vital for specialist doctors. Over the years, the 
use of artificial intelligence (AI) techniques, especially 
machine learning (ML) methods [7, 8] and deep learn-
ing (DL) networks [9, 10], to assist in detecting epileptic 
seizures from EEG signals has grown significantly.

In recent years, extensive research has been conducted 
in the field of diagnosing epileptic seizures through com-
puter-aided diagnosis systems (CADS) [7-10]. An AI-
based CADS consists of a dataset, preprocessing, feature 
extraction and selection, as well as classification [9, 10]. 
Feature extraction is the most crucial part of a CADS 
for detecting epileptic seizures from EEG signals. Until 
2016, most researchers focused on CADS utilizing ML 
techniques [7, 8]. In the field of ML, researchers have 
presented various methods to extract features from EEG 
signals aimed at improving the accuracy of diagnosing 
epileptic seizures. ML feature extraction techniques in-
clude time domain, frequency domain, time-frequency 
domain, and nonlinear transformation methods [3, 4]. 
In ML-based CADS, researchers often combine fea-
tures from different domains to enhance the accuracy of 
epileptic seizure diagnosis. This work is typically per-
formed through trial and error and is highly dependent 
on the individual’s expertise in the field of ML [3, 4].

With the advent of DL techniques, these networks have 
quickly replaced ML methods in various medical appli-
cations, particularly in the diagnosis of epileptic seizures 
[9, 10]. Compared to ML techniques, DL networks have 
achieved promising results in detecting epileptic seizures 
from EEG data. While DL models offer numerous ad-
vantages, they also have some disadvantages, including 
high computational costs and the need for expensive 
GPU processors [11]. Nevertheless, researchers are ea-
ger to implement DL architectures in the diagnosis of 
epileptic seizures due to their significant features, such 
as the ability to automatically extract features from EEG 
signals [10]. The most important DL architectures used 
in applications for epileptic seizure detection include 
convolutional neural networks (CNNs) [12], recurrent 
neural networks (RNNs) [13], autoencoders (AEs) [14], 
deep belief networks (DBNs) [15], attention mecha-
nisms [16], and graph models [17]. The development of 
DL architectures provides hope for researchers, as they 
aim to implement practical tools for diagnosing epileptic 
seizures from EEG signals in hospital environments and 
specialized clinics in the future.
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Attention mechanism architectures are a new category 
of DL techniques that have achieved significant results in 
the diagnosis of brain disorders [18, 19]. Unlike other DL 
networks, these networks perform well with limited in-
put data. These architectures focus on specific regions of 
EEG signals that contain important information, allowing 
for the extraction of the most critical features from EEG 
signals. Transformer models represent a new class of atten-
tion mechanism networks and are widely used as powerful 
tools in the analysis of time series, such as EEG signals [20, 
21]. In this paper, we presented a new method for diagnos-
ing epileptic seizures based on 1D-CNN Bi-LSTM atten-
tion mechanism. First, the EEG signals underwent several 
preprocessing steps, including filtering, down-sampling, 
re-referencing using common average reference (CAR), 
and segmenting the data. Subsequently, the proposed DL 
architecture was employed to extract features from the pre-
processed EEG signals. After that, Sigmoid was utilized 
to classify the input data, and their results were compared. 
Finally, the t-distributed stochastic neighbor embedding (t-
SNE) technique and shapley additive explanations (SHAP) 
[25, 26] were used as an explainable artificial intelligence 
(XAI) technique to represent the feature space.

Related works 

In recent years, numerous studies have been conducted 
in the field of diagnosing epileptic seizures from EEG 
signals using AI techniques, particularly DL networks. 
In all these articles, the main goal of the researchers has 
been to find new DL methods to assist in the early diag-
nosis of epileptic seizures. Below, several articles that 
focus on diagnosing epileptic seizures using novel DL 
models are examined.

Samee et al. utilized a combination of RNN and bi-
directional long short-term memory (Bi-LSTM) archi-
tectures to detect epileptic seizures [27]. In their work, 
the Bonn dataset was selected for the simulations. The 
authors employed EEG signal windowing in the prepro-
cessing step. They then proposed a DL model that fuses 
RNN with Bi-LSTM to extract features from EEG sig-
nals. Finally, they used the Softmax function to classify 
the extracted features and achieved acceptable results.

In another study, Choi et al. proposed a new DL archi-
tecture based on an attention mechanism for diagnosing 
epileptic seizures [28]. First, EEG signals were prepro-
cessed through filtering, segmentation, and normaliza-
tion. Subsequently, 1D convolutional neural networks 
(1D-CNN), gated recurrent units (GRU), and attention 
mechanism networks were employed for feature extrac-
tion and classification. Their proposed DL architecture 

aimed to extract spatial and temporal features to enhance 
the accuracy of epileptic seizure diagnosis from EEG 
signals. Finally, the Softmax activation function was 
utilized in the last fully connected (FC) layer of the pro-
posed DL architecture for classification.

A novel method for detecting epileptic seizures from 
EEG signals using a graph convolutional neural network 
(GCNN) model was introduced by Jia et al. [29]. The 
preprocessing steps in their work included both low- and 
high-level processes. Low-level preprocessing involved 
filtering, normalization, and segmentation. Following 
this, various features were extracted from EEG signals 
as part of the high-level preprocessing step. Finally, a 
GCNN model with the Softmax function was employed 
for feature extraction and classification, respectively.

In another study, Wang et al. proposed a new DL archi-
tecture to detect epileptic seizures [30]. This architecture 
consists of two dynamic multi-graph convolution net-
works (DMGCN) and a channel-weighted transformer 
(CWTr) to extract features from EEG signals. In their 
research, the CHB-MIT dataset was chosen for the ex-
periments, during which the EEG signals were decom-
posed into different time windows in the preprocessing 
step. The proposed DL architecture was then applied in 
the feature extraction stage. Finally, the Softmax func-
tion was used in the classification step, enabling the re-
searchers to achieve satisfactory results.

In another research [31], the authors proposed a meth-
od for detecting epileptic seizures from EEG signals us-
ing a transformer architecture. In the preprocessing step, 
normalization and windowing were first applied to the 
EEG signals of the CHB-MIT dataset. Then, the EEG 
signals were converted into 2D images using the short-
time fourier transform (STFT) method. Next, feature 
extraction from the 2D images was performed using a 
hybrid transformer model. Finally, in the classification 
step, the Softmax algorithm was employed in the last FC 
layer of the proposed DL architecture.

Jibon et al. introduced a graph deep learning (GDL) 
architecture to extract features from EEG signals [32]. 
In this work, simulations were conducted on the TUH 
and CHB-MIT datasets. The preprocessing of EEG sig-
nals includes both low-level and high-level components. 
Low-level preprocessing involves filtering and window-
ing, while high-level preprocessing includes EEG signal 
decomposition, feature extraction, and graph representa-
tion. Subsequently, sequential graph convolutional net-
work (SGCN) and RNN architectures were utilized for 
the feature extraction and classification stages.
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In another study, researchers presented a method for 
diagnosing epileptic seizures using dynamic brain func-
tional connectivity [33]. In this work, the TUH dataset 
was first selected for experiments. Next, EEG signals 
were preprocessed using a functional connectivity meth-
od to convert the EEG signals into 2D images. They then 
employed a graph-generative neural network (GGNN) 
architecture to extract features from the 2D functional 
connectivity images. Finally, the Softmax function was 
applied to classify the input features.

A new method for detecting epileptic seizures based 
on a linear graph convolutional network (LGCN) and 
DenseNet was presented in another study [17]. In the 
preprocessing step, the authors separated the EEG sig-
nals into different time intervals. Following this, they 
applied the Stockwell transform and graph structure 
methods to the EEG window signals. Next, LGCN and 
DenseNet architectures were integrated and employed 
for feature extraction and classification. The results of 
this work demonstrated that the authors achieved signifi-
cant success in diagnosing epileptic seizures.

Ma et al. [34] extracted temporal and spatial features 
using a proposed DL architecture for the detection of 
epileptic seizures. In this study, the CHB-MIT and UCI 
datasets were selected, after which preprocessing steps, 
including normalization and one-hot encoding, were 
applied. The proposed DL architecture consists of 1D-
CNN and Bi-LSTM blocks with an attention mechanism 
to extract features from EEG signals. This part is capable 
of extracting both spatial and temporal features simulta-
neously. In this work, the authors achieved acceptable 
accuracy in diagnosing epileptic seizures.

In another study, Lih et al. [35] employed a transformer 
architecture with the aim of improving the diagnosis of 
epileptic seizures. In this research, they presented a new 
dataset with 121 subjects, including two classes: seizure 
and healthy control (HC). In the preprocessing step, the 
EEG signals were first segmented into different time 
windows, after which the Pearson correlation coefficient 
(PCC) was calculated for each EEG segment. Next, fea-
ture extraction and classification steps were performed 
using a proposed transformer architecture on the 2D 
PCC images. The most significant innovation of this re-
search lies in the data section.

Methods

In this section, the proposed method for diagnosing 
epileptic seizures based on EEG signals is presented. In 
Figure 1, details of the proposed CADS sections based 
on a new DL network are shown. As illustrated, the pro-
posed method consisted of dataset preparation, prepro-
cessing, feature extraction, classification, and post-pro-
cessing sections. The simulation of the proposed method 
was performed using the Turkish epilepsy EEG dataset, 
which included 121 subjects divided into two classes: 
epileptic seizures and HC [35]. Preprocessing steps, in-
cluding filtering, down-sampling, re-referencing using 
CAR, and segmentation, were applied to the EEG sig-
nals. In the next step, a proposed DL architecture, which 
consists of a 1D-CNN Bi-LSTM fused with an attention 
mechanism, was employed to extract spatio-temporal 
features from the preprocessed EEG signals. EEG sig-
nals are non-linear and spatio-temporal in nature [36-38]. 
The 1D-CNN architecture extracts spatial features from 
the EEG signals, while the Bi-LSTM network captures 
temporal dependencies. The attention mechanism helps 
the model focus on the most relevant parts of the signal, 
thereby increasing the accuracy of diagnosing epileptic 
seizures from EEG signals. Finally, t-SNE and SHAP 
were utilized as an XAI technique in the post-processing 
step to visualize the feature space extracted by the pro-
posed DL architecture [25, 26]. 

Dataset and preprocessing 

As mentioned, the Turkish epilepsy dataset was select-
ed to perform simulations and assess the performance 
of the proposed DL architecture. In this dataset, EEG 
data were recorded from 121 subjects, of whom 50 ex-
perienced epileptic seizures while 71 were classified as 
HC [35]. EEG signals were recorded from the parietal, 
frontal, temporal, occipital, frontopolar, auricular, and 
central regions. Data recording was conducted using the 
10-20 electrode placement standard, with 35 channels 
and a sampling frequency of 500 Hz [35]. In this section, 
first, a band-pass filter (0.5–48 Hz) was applied to elimi-
nate artifacts and retain frequency components of inter-
est. Further, the EEG signals were down-sampled to 250 
Hz. CAR was then used to enhance the signal-to-noise 
ratio by subtracting the mean activities across all chan-
nels from each individual channel; this would suppress 
common noises. Finally, the preprocessed EEG signals 
were divided into non-overlapping windows of 5 s, 10 s, 
and 15 s duration.
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DL model 

Today, DL architectures are increasingly being used in 
the field of diagnosing epileptic seizures from EEG sig-
nals. 1D-CNNs are an important category of DL models 
that effectively extract spatial features from EEG sig-
nals; however, they overlook the temporal correlations 
between EEG channels [36, 37]. RNNs represent an-
other category of DL frameworks that are widely used 
for feature extraction from EEG signals. RNN models 
are generally more successful at capturing temporal 
features compared to CNN models [21]. Researchers 
have demonstrated that CNN-RNN architectures can 
successfully extract both spatial and temporal features 
from EEG signals. However, these architectures lack a 
mechanism to identify the importance of specific parts of 
the input EEG signals, such as critical channels, which 
could improve the accuracy of epileptic seizure detec-
tion. Consequently, CNN-RNN architectures frequently 
face challenges in the simultaneous extraction of spatio-
temporal features. To address this issue, attention mech-
anism architectures have been introduced to overcome 
the limitations of RNN models in feature extraction from 
EEG signals. In this paper, we proposed an improved ar-
chitecture based on the 1D-CNN Bi-LSTM Attention 
to extract both spatial and temporal features from EEG 
signals. 

1D-CNN module  

The presented model initially used 1D-CNN blocks, 
which are responsible for extracting spatial features 
from EEG raw signals. The basic operations inside these 
convolutional blocks were formally described as follows 
(Equation 1):
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Figure 1. Proposed deep learning model for epileptic seizure detection

Barzegar MM, et al. Explainable EEG-Based Epileptic Seizure Detection with CNN–Bi-LSTM. JRH. 2025; 15(Special Issue: Artificial Intelligence):779-792.
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Bi-LSTM module

After the 1D-CNN feature extraction, the output feature 
sequences were utilized by a Bi-LSTM network, which 
is able to identify the temporal dynamics of the EEG 
signals. The main operation of the Bi-LSTM network is 
based on the functions performed inside the LSTM unit. 
The activities that happen in the main LSTM unit at time  
are mathematically described below (Equation 4):
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 that favor the time steps most applicable to 

the classification task. This was accomplished by com-
puting all of the Bi-LSTM outputs ht and multiplying 
them by their associated attention weight, allowing the 
Bi-LSTM to dynamically adjust the focus of learning on 
the relevant temporal components of the data and filter 
out any noise or otherwise unhelpful data. A Global Av-
erage Pooling 1D layer then aggregated these weighted 
representations into a compact feature vector, which was 
subsequently forwarded to the FC layers for final clas-
sification.

Experiments  

Hardware and software resources 

In this section, we reported the results of the proposed 
DL architecture for epileptic seizure detection from EEG 
signals. All simulations in this study were conducted us-
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ing a hardware system equipped with an NVIDIA 1070 
GPU, 512 GB of RAM, and a Core i7 CPU. Additional-
ly, TensorFlow [40] and Scikit-learn tools [40] were used 
for implementing the DL architecture and calculating the 
evaluation metrics, respectively. The implementation of 
the t-SNE technique [25] was also carried out using the 
Scikit-learn library [40].

Evaluation metrics

Calculating evaluation metrics is essential for evalu-
ating the performance of the proposed DL architecture 
for epileptic seizure diagnosis. In this section, evalu-
ation measures, including accuracy (Acc), sensitivity 
(Sen), specificity (Spec), precision (Prec), and F1 score 
(F1) were calculated. The formulas for these evaluation 
metrics are briefly reported in Table 2. To implement the 
proposed DL model, 5-fold cross-validation was applied 
to the entire EEG dataset. In each fold, 80% of the data 
was used for training and the remaining 20% served as 
the test set. After that, the aforementioned evaluation 

metrics were calculated for the training, testing, and 
validation data. For this purpose, the Scikit-learn library 
[40] was employed to compute the evaluation metrics 
in a Python environment. Given the importance of data 
validation, this study reported the results of validation 
data in the experimental results section.

Implementation details

The hyperparameters of the DL network proposed to 
achieve optimal performance are presented below. The 
number of epochs, batch size, and regularization (L1) 
were set at 100, 32, and 0.0009, respectively. Further-
more, the Adam optimization method and binary cross-
entropy were utilized as the cost function in the imple-
mentation of the proposed DL network. Additionally, the 
Sigmoid activation function was employed as the clas-
sification step.

Table 1. Details of 1D-CNN Bi-LSTM attention architecture as a part of the proposed deep learning model 

ActivationStrideKernel SizeFiltersLayersNo.

----Input Data1

ReLU1364Conv1D2

-12-Max Pooling3

Rate=0.5----Dropout4

ReLU1348Conv1D5

-12-Max Pooling6

Rate=0.5---Dropout7

ReLU1332Conv1D8

-12-Max Pooling9

---2×32Bi-LSTM10

Rate=0.5---Dropout11

----Attention12

----GlobalAveragePooling1D13

ReLU--64Dense14

Rate=0.5---Dropout15

ReLU--32Dense16

Sigmoid--1Dense17
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Results

This section presents the results of the proposed DL 
architecture for detecting epileptic seizures from EEG 
signals. Tables 3, 4 and 5 show the performance of dif-
ferent DL architectures applied to EEG signals with vari-
ous time windows. For each EEG time frame, the results 
of the 1D-CNN, 1D-CNN Bi-LSTM, and 1D-CNN Bi-
LSTM attention models were compared. According to 
Tables 3, 4 and 5, the proposed 1D-CNN Bi-LSTM at-

tention architecture with a 10-second frame achieved the 
highest accuracy in detecting epileptic seizures.

Accordingly, additional results for the proposed DL ar-
chitecture with a 10-second frame are presented below. 
Figure 2 illustrates the ROC curve and confusion ma-
trix of the proposed 1D-CNN Bi-LSTM attention model 
based on EEG signals with a 10-second time frame. As 
shown, the proposed DL architecture achieved strong 
performance in epileptic seizure detection.

Table 2. Description of evaluation metric parameters used

Evaluation Metric Equations

Accuracy (Acc)
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1D-CNN Bi-LSTM 
attention

0.9900±0.0035 0.9932±0.0093 0.9859±0.0092 0.9894±0.0068 0.9913±0.0031

Table 4. Results for the proposed DL model based on eeg signals with a 10s time frame

DL Models
Mean±SD

Accuracy Sensitivity Specificity Precision F1

1D-CNN 0.9818±0.0051 0.9825±0.0137 0.9809±0.0146 0.9856±0.0109 0.9839±0.0046

1D-CNN Bi-LSTM 0.9876±0.0078 0.9826±0.0136 0.9843±0.0052 0.9956±0.0040 0.9890±0.0070

1D-CNN Bi-LSTM attention 0.9949±0.0016 0.9959±0.0017 0.9936±0.0024 0.9952±0.0018 0.9955±0.0014
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Next, the results of XAI methods, including t-SNE and 
SHAP models, are presented to provide further insights 
into the proposed method [25, 26]. By reducing high-
dimensional EEG data to a lower-dimensional space, 
t-SNE facilitates the visualization of complex patterns 
and relationships in seizure data, enabling clinicians to 
understand the fundamental features that distinguish dif-
ferent types of seizures. This interpretability is critical 
for practitioners, as it provides insights into the model’s 
decision-making process and allows for a more informed 
evaluation of the classifications produced by the pro-
posed DL model. Figure 3 displays the results of the t-
SNE method for the proposed DL architecture based on 
5-fold cross-validation technique.

The interpretability of the proposed model was assessed 
using SHAP, which is a unified framework to explain 
predictions based on cooperative game theory. SHAP 
assigns a unique importance value to each feature, rep-
resenting its average marginal contribution to the mod-
el’s prediction across all possible feature combinations. 
This, in turn, helps us understand the local behavior of 

which specific features drive individual classification 
decision [26]. The results of the SHAP model as an XAI 
technique are shown in Figure 4. Figure 4a presents the 
SHAP summary bar plot, which displays the absolute 
mean SHAP values for each feature. This identifies the 
most influential EEG channels—PZA2, F3C3, P4A2, 
C3P3, and T3T5—in detecting epileptic seizures using 
the proposed DL model. These channels were located 
in the frontal, temporal, and parietal regions, which is 
consistent with neurophysiological evidence. Figure 4b 
also shows the SHAP Beeswarm plot, which illustrates 
the full distribution of SHAP values for each feature and 
indicates how increases or decreases in feature values af-
fect the probability of seizure detection. The color of the 
dots represents feature values (blue for low, red for high). 
For important features, such as PZA2, F3C3, and P4A2, 
high feature values (red points) generally correspond to 
positive SHAP values, thereby increasing the likelihood 
of seizure prediction. This behavior aligns with typical 
EEG patterns during seizures, including increased am-
plitude, sharp waves, and burst activity.

Table 5. Results for the proposed DL model based on eeg signals with a 15s time frame

DL Models
Mean±SD

Accuracy Sensitivity Specificity Precision F1

1D-CNN 0.9839±0.0027 0.9928±0.0061 0.9722±0.0126 0.9792±0.0094 0.9859±0.0024

1D-CNN Bi-LSTM 0.9825±0.0024 0.9820±0.0112 0.9828±0.0153 0.9874±0.0109 0.9846±0.0019

1D-CNN Bi-LSTM attention 0.9929±0.0046 0.9972±0.0023 0.9872±0.0116 0.9903±0.0091 0.9937±0.0041

(a) (b)

Figure 2. a) ROC curve b) confusion matrix for the proposed method based on EEG signals with a 10s time frame 
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Discussion

Epileptic seizures are among the most well-known 
neurological disorders caused by abnormal electrical 
discharges in brain neurons [2-4]. This condition is as-
sociated with transient seizures throughout the day and 
poses serious health risks to patients, including fainting, 
anesthesia, and loss of muscle control [1-3]. Generally, 
neurologists diagnose epileptic seizures by examining 
abnormal amplitudes on EEG waveforms, a task that is 
very time-consuming and associated with human error 
[7, 8]. Because EEG signals are non-linear and contain 

various artifacts, their visual analysis is challenging for 
expert clinicians. Additionally, EEG signals are usually 
recorded over long periods and with different sampling 
frequencies, making accurate visual observation ex-
tremely time-consuming for doctors [9-11]. Moreover, 
EEG signals are captured through multiple channels, fur-
ther complicating the data used for diagnosing epileptic 
seizures.

In recent years, AI techniques, particularly DL models, 
have garnered attention from researchers for diagnosing 
epileptic seizures from EEG signals [9, 10]. This study in-

(a) (b) (c) (d) (e)

Figure 3. Results of t-SNE method for the proposed DL model 

(a) (b)

Figure 4. XAI plots
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troduced a new method for diagnosing epileptic seizures 
based on a 1D-CNN Bi-LSTM attention architecture. 
The proposed method encompassed several sections: 
dataset preparation, preprocessing, feature extraction, 
classification, and post-processing. The implementation 
and evaluation of this method were conducted using a 
Turkish epilepsy dataset [35]. Initially, preprocessing 
steps, such as band-pass filtering (0.5–48 Hz), down-
sampling to 250 Hz, re-referencing using CAR, and seg-
menting were applied to the EEG signals. Subsequently, 
the proposed DL model was implemented for extracting 
spatial-temporal features from the preprocessed EEG 
signals. Finally, the t-SNE method and SHAP [25, 26] 
were employed as a post-processing step to visualize the 
space of the extracted features. In Table 6, we presented 
the results of papers on diagnosis of epileptic seizures 
and compared them with our proposed method. As ob-
served, our proposed method demonstrated significant 
results compared to other research.

In the future, the proposed method could serve as prac-
tical software in hospital settings to assist specialist doc-
tors in the rapid diagnosis of epileptic seizures based on 
EEG signals. Recently, some researchers have utilized 
new attention mechanism architectures, especially at-
tention-graph models [48, 49] and transformer models 
with mutual learning architectures [50, 51], in medical 
applications. For future work, these DL networks could 
be applied to the diagnosis of epileptic seizures. It has 
been demonstrated that Graph DL networks have been 
highly successful in diagnosing brain disorders from 
EEG signals [52, 53]. For further work, the use of new 
graph architectures, such as multi-layer graph attention 

networks (MGANet) [54], spatial-temporal graph at-
tention networks with transformer encoders (STGATE) 
[55], and adaptive gated graph convolutional networks 
(AGGCN) [56] should be considered for detecting epi-
leptic seizures.

Conclusion

In conclusion, epileptic seizures pose significant health 
challenges and are traditionally diagnosed through 
time-consuming and error-prone EEG analysis. The 
integration of advanced deep learning models, such as 
the proposed 1D-CNN Bi-LSTM attention architecture, 
demonstrates promising improvements in accurately de-
tecting seizures from EEG signals. The study’s results 
indicate that this approach outperforms existing meth-
ods, highlighting its potential for clinical application. Fu-
ture research should explore incorporating cutting-edge 
attention mechanisms and graph-based neural networks 
to further enhance diagnostic accuracy and facilitate 
practical deployment in medical settings.
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Table 6. A comparison of the results presented in this article with those of other related studies

Ref. Dataset Subjects Deep Learning Model Classifier Performance 

[35] Turkey 71 healthy, 50 
patient

PCC+positional 
encoding+transformer model

Sigmoid Acc=85, Sen=82, Spec=87

[41] CHB-MIT 24 patient GAT+Bi-LSTM Softmax Acc=98.52, Sen=97.75, Spec=94.34

[42] Bonn Univer-
sity

5 different sets 
of EEG signals

Self-organizing neural 
network+MLP+genetic algorithm

Sigmoid Acc=99.20, Prec=98, Recall=100

[43] CHB-MIT 16 patient 3D-DCAE+Bi-LSTM Sigmoid Acc=99.08, Sen=99.21, Spec=99.11

[44] CHB-MIT 24 patient Superlet transform+VGG19 Softmax Acc=94.30, Sen=94.50, Spec=94

[45] CHB-MIT 22 patient Bi-GRU Sigmoid Acc=98.49, Sen=93.89, Spec=98.49

[46] CHB-MIT 24 patient Inception and residual model Softmax Acc=98.34, Sen=73.08, Spec=98.79

[47] CHB-MIT 24 patient CNN Softmax Acc=96.99, Sen=97.06, Spec=96.89

Our 
Work

Turkey 71 healthy, 50 
patient

1D-CNN Bi-LSTM attention Sigmoid Acc=99.49, Sen=99.59, Spec=99.36
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