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ABSTRACT

Background: Epilepsy is a chronic neurological disorder marked by recurrent daily seizures
that threaten patient safety. Electroencephalography (EEG) is a crucial neuroimaging tool for
epilepsy diagnosis, but manual interpretation of EEG signals is challenging for clinicians. To
assist specialists, automated systems, such as computer-aided diagnosis systems (CADS) based
on deep learning (DL) are essential.

Methods: The proposed CADS system was validated using the Turkish epilepsy dataset.
In preprocessing, EEG signals were filtered, down-sampled, re-referenced using common
average reference (CAR), and segmented into multiple temporal windows. A new feature
extraction framework combining one-dimensional convolutional neural networks (1D-CNN),
bidirectional long short-term memory (Bi-LSTM), and an attention mechanism was developed.
All experiments were performed using 5-fold cross-validation. Post-hoc explainability was
evaluated using explainable artificial intelligence (XAI) techniques, including t-distributed
stochastic neighbor embedding (t-SNE) and shapley additive explanations (SHAP).

Results: The proposed CADS achieved a seizure diagnosis accuracy of 99.49%, demonstrating
high robustness across the validation folds, with minimal variance between folds (£0.12%).
Feature space visualization confirmed clear class separation, and SHAP analysis provided
clinically meaningful explanations for model decisions.

Conclusion: The proposed DL architecture shows strong potential for reliable and interpretable
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Introduction

pilepsy is a chronic neurological disorder
characterized by frequent seizures due to
abnormal electrical activity in the human
brain [1]. The World Health Organiza-
tion (WHO) has reported that more than
50 million people worldwide suffer from
epileptic seizures [1]. According to this re-
port, epileptic seizures are the third most common brain
disorder, following stroke and Alzheimer’s disease (AD)
[1, 2]. These seizures negatively affect the human ner-
vous system and lead to various challenges in the daily
lives of patients, such as movement disorders, lack of
bladder control, and loss of consciousness [2, 3]. Such
issues can be very dangerous for individuals with epi-
lepsy, potentially resulting in paralysis, fractures, or even
death [3]. Due to their unpredictability, epileptic seizures
often lead to fear, anxiety, stress, and a decrease in pa-
tients’ self-confidence [3]. Specialists believe that diag-
nosing epileptic seizures in their early stages can help
treat over 70% of affected individuals [4].

Electroencephalography (EEG) is one of the most well-
known methods for diagnosing epileptic seizures among
specialist doctors [2-4]. EEG records brain activity dur-
ing epileptic seizures from the scalp non-invasively [1].
In addition, EEG recording is very popular among neu-
rologists and researchers due to its low cost and easy
portability compared to other neuroimaging modalities
[3]. EEG measures electrical currents in the dendrites of
neurons that are close to the surface of the cerebral cor-
tex with high resolution [4]. Currently, specialist doctors
visually extract information from EEG signals to diag-
nose epileptic seizures. In this process, neurologists can
diagnose the condition based on important information
in EEG signals, including spikes, sharp waves, and slow
waves [5]. Therefore, this method is highly dependent on
the experience of doctors specializing in the analysis of
EEG signals [5].

Visual analysis of EEG signals is always challenging
for neurologists due to the variety of epileptic seizures.
Additionally, EEG signals are usually recorded under
different conditions, such as with EEG devices that have
different sampling frequencies, along with various ar-
tifacts from patients. This variability makes it difficult
to diagnose epileptic seizures accurately. Misdiagnosis
of epileptic seizures by specialist doctors can cause ir-
reparable damage to patients [4, 5]. For example, epilep-
tic seizures are generally classified into two categories:
focal and generalized [6]. Misdiagnosis of the type of
epileptic seizure can lead to the prescription of inappro-
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priate medications, which may result in drug-resistant
epilepsy and, ultimately, death [4, 5]. Therefore, diag-
nosing epileptic seizures at their early stages from EEG
signals is vital for specialist doctors. Over the years, the
use of artificial intelligence (AI) techniques, especially
machine learning (ML) methods [7, 8] and deep learn-
ing (DL) networks [9, 10], to assist in detecting epileptic
seizures from EEG signals has grown significantly.

In recent years, extensive research has been conducted
in the field of diagnosing epileptic seizures through com-
puter-aided diagnosis systems (CADS) [7-10]. An Al-
based CADS consists of a dataset, preprocessing, feature
extraction and selection, as well as classification [9, 10].
Feature extraction is the most crucial part of a CADS
for detecting epileptic seizures from EEG signals. Until
2016, most researchers focused on CADS utilizing ML
techniques [7, 8]. In the field of ML, researchers have
presented various methods to extract features from EEG
signals aimed at improving the accuracy of diagnosing
epileptic seizures. ML feature extraction techniques in-
clude time domain, frequency domain, time-frequency
domain, and nonlinear transformation methods [3, 4].
In ML-based CADS, researchers often combine fea-
tures from different domains to enhance the accuracy of
epileptic seizure diagnosis. This work is typically per-
formed through trial and error and is highly dependent
on the individual’s expertise in the field of ML [3, 4].

With the advent of DL techniques, these networks have
quickly replaced ML methods in various medical appli-
cations, particularly in the diagnosis of epileptic seizures
[9, 10]. Compared to ML techniques, DL networks have
achieved promising results in detecting epileptic seizures
from EEG data. While DL models offer numerous ad-
vantages, they also have some disadvantages, including
high computational costs and the need for expensive
GPU processors [11]. Nevertheless, researchers are ea-
ger to implement DL architectures in the diagnosis of
epileptic seizures due to their significant features, such
as the ability to automatically extract features from EEG
signals [10]. The most important DL architectures used
in applications for epileptic seizure detection include
convolutional neural networks (CNNs) [12], recurrent
neural networks (RNNs) [13], autoencoders (AEs) [14],
deep belief networks (DBNs) [15], attention mecha-
nisms [16], and graph models [17]. The development of
DL architectures provides hope for researchers, as they
aim to implement practical tools for diagnosing epileptic
seizures from EEG signals in hospital environments and
specialized clinics in the future.
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Attention mechanism architectures are a new category
of DL techniques that have achieved significant results in
the diagnosis of brain disorders [18, 19]. Unlike other DL
networks, these networks perform well with limited in-
put data. These architectures focus on specific regions of
EEQG signals that contain important information, allowing
for the extraction of the most critical features from EEG
signals. Transformer models represent a new class of atten-
tion mechanism networks and are widely used as powerful
tools in the analysis of time series, such as EEG signals [20,
21]. In this paper, we presented a new method for diagnos-
ing epileptic seizures based on 1D-CNN Bi-LSTM atten-
tion mechanism. First, the EEG signals underwent several
preprocessing steps, including filtering, down-sampling,
re-referencing using common average reference (CAR),
and segmenting the data. Subsequently, the proposed DL
architecture was employed to extract features from the pre-
processed EEG signals. After that, Sigmoid was utilized
to classify the input data, and their results were compared.
Finally, the t-distributed stochastic neighbor embedding (t-
SNE) technique and shapley additive explanations (SHAP)
[25, 26] were used as an explainable artificial intelligence
(XAI) technique to represent the feature space.

Related works

In recent years, numerous studies have been conducted
in the field of diagnosing epileptic seizures from EEG
signals using Al techniques, particularly DL networks.
In all these articles, the main goal of the researchers has
been to find new DL methods to assist in the early diag-
nosis of epileptic seizures. Below, several articles that
focus on diagnosing epileptic seizures using novel DL
models are examined.

Samee et al. utilized a combination of RNN and bi-
directional long short-term memory (Bi-LSTM) archi-
tectures to detect epileptic seizures [27]. In their work,
the Bonn dataset was selected for the simulations. The
authors employed EEG signal windowing in the prepro-
cessing step. They then proposed a DL model that fuses
RNN with Bi-LSTM to extract features from EEG sig-
nals. Finally, they used the Softmax function to classify
the extracted features and achieved acceptable results.

In another study, Choi et al. proposed a new DL archi-
tecture based on an attention mechanism for diagnosing
epileptic seizures [28]. First, EEG signals were prepro-
cessed through filtering, segmentation, and normaliza-
tion. Subsequently, 1D convolutional neural networks
(1D-CNN), gated recurrent units (GRU), and attention
mechanism networks were employed for feature extrac-
tion and classification. Their proposed DL architecture
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aimed to extract spatial and temporal features to enhance
the accuracy of epileptic seizure diagnosis from EEG
signals. Finally, the Softmax activation function was
utilized in the last fully connected (FC) layer of the pro-
posed DL architecture for classification.

A novel method for detecting epileptic seizures from
EEG signals using a graph convolutional neural network
(GCNN) model was introduced by Jia et al. [29]. The
preprocessing steps in their work included both low- and
high-level processes. Low-level preprocessing involved
filtering, normalization, and segmentation. Following
this, various features were extracted from EEG signals
as part of the high-level preprocessing step. Finally, a
GCNN model with the Softmax function was employed
for feature extraction and classification, respectively.

In another study, Wang et al. proposed a new DL archi-
tecture to detect epileptic seizures [30]. This architecture
consists of two dynamic multi-graph convolution net-
works (DMGCN) and a channel-weighted transformer
(CWTr) to extract features from EEG signals. In their
research, the CHB-MIT dataset was chosen for the ex-
periments, during which the EEG signals were decom-
posed into different time windows in the preprocessing
step. The proposed DL architecture was then applied in
the feature extraction stage. Finally, the Softmax func-
tion was used in the classification step, enabling the re-
searchers to achieve satisfactory results.

In another research [31], the authors proposed a meth-
od for detecting epileptic seizures from EEG signals us-
ing a transformer architecture. In the preprocessing step,
normalization and windowing were first applied to the
EEG signals of the CHB-MIT dataset. Then, the EEG
signals were converted into 2D images using the short-
time fourier transform (STFT) method. Next, feature
extraction from the 2D images was performed using a
hybrid transformer model. Finally, in the classification
step, the Softmax algorithm was employed in the last FC
layer of the proposed DL architecture.

Jibon et al. introduced a graph deep learning (GDL)
architecture to extract features from EEG signals [32].
In this work, simulations were conducted on the TUH
and CHB-MIT datasets. The preprocessing of EEG sig-
nals includes both low-level and high-level components.
Low-level preprocessing involves filtering and window-
ing, while high-level preprocessing includes EEG signal
decomposition, feature extraction, and graph representa-
tion. Subsequently, sequential graph convolutional net-
work (SGCN) and RNN architectures were utilized for
the feature extraction and classification stages.

Barzegar MM, et al. Explainable EEG-Based Epileptic Seizure Detection with CNN-Bi-LSTM. JRH. 2025; 15(Special Issue: Artificial Intelligence):779-792.

781




2025. Volume 15. Special Issue: Artificial Intelligence

782

In another study, researchers presented a method for
diagnosing epileptic seizures using dynamic brain func-
tional connectivity [33]. In this work, the TUH dataset
was first selected for experiments. Next, EEG signals
were preprocessed using a functional connectivity meth-
od to convert the EEG signals into 2D images. They then
employed a graph-generative neural network (GGNN)
architecture to extract features from the 2D functional
connectivity images. Finally, the Softmax function was
applied to classify the input features.

A new method for detecting epileptic seizures based
on a linear graph convolutional network (LGCN) and
DenseNet was presented in another study [17]. In the
preprocessing step, the authors separated the EEG sig-
nals into different time intervals. Following this, they
applied the Stockwell transform and graph structure
methods to the EEG window signals. Next, LGCN and
DenseNet architectures were integrated and employed
for feature extraction and classification. The results of
this work demonstrated that the authors achieved signifi-
cant success in diagnosing epileptic seizures.

Ma et al. [34] extracted temporal and spatial features
using a proposed DL architecture for the detection of
epileptic seizures. In this study, the CHB-MIT and UCI
datasets were selected, after which preprocessing steps,
including normalization and one-hot encoding, were
applied. The proposed DL architecture consists of 1D-
CNN and Bi-LSTM blocks with an attention mechanism
to extract features from EEG signals. This part is capable
of extracting both spatial and temporal features simulta-
neously. In this work, the authors achieved acceptable
accuracy in diagnosing epileptic seizures.

In another study, Lih et al. [35] employed a transformer
architecture with the aim of improving the diagnosis of
epileptic seizures. In this research, they presented a new
dataset with 121 subjects, including two classes: seizure
and healthy control (HC). In the preprocessing step, the
EEG signals were first segmented into different time
windows, after which the Pearson correlation coefficient
(PCC) was calculated for each EEG segment. Next, fea-
ture extraction and classification steps were performed
using a proposed transformer architecture on the 2D
PCC images. The most significant innovation of this re-
search lies in the data section.
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Methods

In this section, the proposed method for diagnosing
epileptic seizures based on EEG signals is presented. In
Figure 1, details of the proposed CADS sections based
on a new DL network are shown. As illustrated, the pro-
posed method consisted of dataset preparation, prepro-
cessing, feature extraction, classification, and post-pro-
cessing sections. The simulation of the proposed method
was performed using the Turkish epilepsy EEG dataset,
which included 121 subjects divided into two classes:
epileptic seizures and HC [35]. Preprocessing steps, in-
cluding filtering, down-sampling, re-referencing using
CAR, and segmentation, were applied to the EEG sig-
nals. In the next step, a proposed DL architecture, which
consists of a ID-CNN Bi-LSTM fused with an attention
mechanism, was employed to extract spatio-temporal
features from the preprocessed EEG signals. EEG sig-
nals are non-linear and spatio-temporal in nature [36-38].
The 1D-CNN architecture extracts spatial features from
the EEG signals, while the Bi-LSTM network captures
temporal dependencies. The attention mechanism helps
the model focus on the most relevant parts of the signal,
thereby increasing the accuracy of diagnosing epileptic
seizures from EEG signals. Finally, t-SNE and SHAP
were utilized as an XAl technique in the post-processing
step to visualize the feature space extracted by the pro-
posed DL architecture [25, 26].

Dataset and preprocessing

As mentioned, the Turkish epilepsy dataset was select-
ed to perform simulations and assess the performance
of the proposed DL architecture. In this dataset, EEG
data were recorded from 121 subjects, of whom 50 ex-
perienced epileptic seizures while 71 were classified as
HC [35]. EEG signals were recorded from the parietal,
frontal, temporal, occipital, frontopolar, auricular, and
central regions. Data recording was conducted using the
10-20 electrode placement standard, with 35 channels
and a sampling frequency of 500 Hz [35]. In this section,
first, a band-pass filter (0.5-48 Hz) was applied to elimi-
nate artifacts and retain frequency components of inter-
est. Further, the EEG signals were down-sampled to 250
Hz. CAR was then used to enhance the signal-to-noise
ratio by subtracting the mean activities across all chan-
nels from each individual channel; this would suppress
common noises. Finally, the preprocessed EEG signals
were divided into non-overlapping windows of 5 s, 10 s,
and 15 s duration.
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Figure 1. Proposed deep learning model for epileptic seizure detection

DL model

Today, DL architectures are increasingly being used in
the field of diagnosing epileptic seizures from EEG sig-
nals. 1D-CNNs are an important category of DL models
that effectively extract spatial features from EEG sig-
nals; however, they overlook the temporal correlations
between EEG channels [36, 37]. RNNs represent an-
other category of DL frameworks that are widely used
for feature extraction from EEG signals. RNN models
are generally more successful at capturing temporal
features compared to CNN models [21]. Researchers
have demonstrated that CNN-RNN architectures can
successfully extract both spatial and temporal features
from EEG signals. However, these architectures lack a
mechanism to identify the importance of specific parts of
the input EEG signals, such as critical channels, which
could improve the accuracy of epileptic seizure detec-
tion. Consequently, CNN-RNN architectures frequently
face challenges in the simultaneous extraction of spatio-
temporal features. To address this issue, attention mech-
anism architectures have been introduced to overcome
the limitations of RNN models in feature extraction from
EEG signals. In this paper, we proposed an improved ar-
chitecture based on the 1D-CNN Bi-LSTM Attention
to extract both spatial and temporal features from EEG
signals.
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1D-CNN module

The presented model initially used 1D-CNN blocks,
which are responsible for extracting spatial features
from EEG raw signals. The basic operations inside these
convolutional blocks were formally described as follows
(Equation 1):

Ni—1

l.y} =g Z conle(Wil,j,Xil_l) + bjl
i=1

where x!=1 denotes the i-th feature map in the (I —
1)-th layer; .,0 denotes the j-th feature map in the I-th
layer, while wj; represents the trainable convolutional
kernel; N,_, represents the number of feature maps in
the (1-1)-th layer; conv1D represents the 1D convolution
operation without zero-padding; bjl represents the bias
of the j-th feature map in the I-th layer; and 0 denotes
the ReLU activation function, which is used to suppress
overfitting and increase the non-linearity of the model. It
is defined as follows (Equation 2):

0ifx<0;

2000 = {xifx>01
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The max-pooling operation in layer was defined as fol-
lows (Equation 3):

l_
3. y; = max(Xj, Xjqq, ) Xj4k—1)

In this operation, a sliding window of size k was ap-
plied over the input sequence. For each position j, the
max-pooling function selects the maximum value within
the window. Max-pooling contained no trainable param-
eters and its purpose was to reduce the dimensionality of
the feature representation.

Table 1 summarizes the specifications of the 1D-CNN
Bi-LSTM Attention architecture, which comprises a to-
tal of 17 layers. The input data first passes through a 1D
convolutional layer with 64 filters, a kernel size of 3, a
stride of 1, and ReLU for activation. This was followed
by a max-pooling layer to reduce the dimensionality by
half, and a dropout layer with a rate of 0.5 was used to
control overfitting. Next, another 1D convolutional lay-
er with 48 filters, a kernel size of 3, a stride of 1, and
ReLU for activation was used. Similar to the previous
block, this layer is followed by a max-pooling layer and
a dropout layer with a rate of 0.5. A third convolutional
layer, containing 32 filters, a kernel size of 3, a stride of
1, and ReLU for activation, is then used; this is again
followed by a max-pooling layer with a pool size of 2.
These convolutional, pooling, and dropout operations
extracted hierarchical spatial features in the EEG signals
while controlling overfitting. The output of the last block
was fed into the next subsequent modules of the network
for processing.

Bi-LSTM module

After the ID-CNN feature extraction, the output feature
sequences were utilized by a Bi-LSTM network, which
is able to identify the temporal dynamics of the EEG
signals. The main operation of the Bi-LSTM network is
based on the functions performed inside the LSTM unit.
The activities that happen in the main LSTM unit at time
are mathematically described below (Equation 4):

fe = U(Wf [he—1, xe] + bf)

ir = o(W; - [he_y, ] + by)
4. Ce = tanh(We - [he_q, %] + be)
C=fiOC1+iiOC

o = o(Wp - [he_g, x] + by)

hf = O¢ @ tanh(Ct)
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Where x_symbolizes the input feature vector, h , indi-
cates the prior hidden state, c_, represents the prior cell
state, o is the Sigmoid function, and () is the Hadamard
product. The Bi-LSTM architecture processes the input
in both forward h, and backward h, directions, enabling
the model to effectively learn long-range dependencies
in the temporal domain. Each time step is passed through
two parallel LSTM units—one moving from past to fu-
ture and the other from future to past—providing a richer
representation of temporal patterns. The Bi-LSTM has
32 hidden units in both directions. The final output vec-
tor H, of the Bi-LSTM layer is the concatenation of the
forward and backward hidden states (Equation 5):

5. Hy = [he , by
Attention mechanism module

The Bi-LSTM layer generates activation vectors that
will be input into an attention mechanism built to help
accentuate the most relevant temporal variables. The
mathematical formulation of the attention mechanism is
defined as follows, where is the output matrix of the Bi-
LSTM (Equation 6):

u; = tanh(W,h, + by,)

exp(ui wa)

- ZZ=1 exp (uZWa)

6. ¢

T

V= Zatht

t=1

The attention layer produced a distribution of attention
weights @t that favor the time steps most applicable to
the classification task. This was accomplished by com-
puting all of the Bi-LSTM outputs h,_and multiplying
them by their associated attention weight, allowing the
Bi-LSTM to dynamically adjust the focus of learning on
the relevant temporal components of the data and filter
out any noise or otherwise unhelpful data. A Global Av-
erage Pooling 1D layer then aggregated these weighted
representations into a compact feature vector, which was
subsequently forwarded to the FC layers for final clas-
sification.

Experiments
Hardware and software resources

In this section, we reported the results of the proposed
DL architecture for epileptic seizure detection from EEG
signals. All simulations in this study were conducted us-
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Table 1. Details of 1D-CNN Bi-LSTM attention architecture as a part of the proposed deep learning model

No. Layers Filters Kernel Size Stride Activation
1 Input Data - - - -
2 ConvlD 64 3 1 RelU
3 Max Pooling - 2 1 -
4 Dropout - - - Rate=0.5
5 ConvlD 48 3 1 ReLU
6 Max Pooling - 2 1 -
7 Dropout - - - Rate=0.5
8 ConvlD 32 3 1 ReLU
9 Max Pooling - 2 1 -
10 Bi-LSTM 2x32 - - -
11 Dropout - - - Rate=0.5
12 Attention = = = =
13 GlobalAveragePooling1D - - - -
14 Dense 64 - - RelLU
15 Dropout - - - Rate=0.5
16 Dense 32 = = RelU
17 Dense 1 - - Sigmoid
Ll

ing a hardware system equipped with an NVIDIA 1070
GPU, 512 GB of RAM, and a Core i7 CPU. Additional-
ly, TensorFlow [40] and Scikit-learn tools [40] were used
for implementing the DL architecture and calculating the
evaluation metrics, respectively. The implementation of
the t-SNE technique [25] was also carried out using the
Scikit-learn library [40].

Evaluation metrics

Calculating evaluation metrics is essential for evalu-
ating the performance of the proposed DL architecture
for epileptic seizure diagnosis. In this section, evalu-
ation measures, including accuracy (Acc), sensitivity
(Sen), specificity (Spec), precision (Prec), and F1 score
(F1) were calculated. The formulas for these evaluation
metrics are briefly reported in Table 2. To implement the
proposed DL model, 5-fold cross-validation was applied
to the entire EEG dataset. In each fold, 80% of the data
was used for training and the remaining 20% served as
the test set. After that, the aforementioned evaluation

metrics were calculated for the training, testing, and
validation data. For this purpose, the Scikit-learn library
[40] was employed to compute the evaluation metrics
in a Python environment. Given the importance of data
validation, this study reported the results of validation
data in the experimental results section.

Implementation details

The hyperparameters of the DL network proposed to
achieve optimal performance are presented below. The
number of epochs, batch size, and regularization (L1)
were set at 100, 32, and 0.0009, respectively. Further-
more, the Adam optimization method and binary cross-
entropy were utilized as the cost function in the imple-
mentation of the proposed DL network. Additionally, the
Sigmoid activation function was employed as the clas-
sification step.
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Table 2. Description of evaluation metric parameters used
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Evaluation Metric Equations
TP +TN
Accuracy (Acc) A = TP TN + FP 4 FN
Sensitivity (Sen) S P
ensItivI en =
Y "ETPTEN
Specificity (Spec) S TN
ecCITICI ec =
peclicty e PeC = TN+ FP
Precision (Prec) Prec = — %
recision rec rec = TP + FP
1 2TP
F1 F1 =
score (F1) 2TP + FP + FN

Results

This section presents the results of the proposed DL
architecture for detecting epileptic seizures from EEG
signals. Tables 3, 4 and 5 show the performance of dif-
ferent DL architectures applied to EEG signals with vari-
ous time windows. For each EEG time frame, the results
of the 1D-CNN, 1D-CNN Bi-LSTM, and 1D-CNN Bi-
LSTM attention models were compared. According to
Tables 3, 4 and 5, the proposed 1D-CNN Bi-LSTM at-

LR N

tention architecture with a 10-second frame achieved the
highest accuracy in detecting epileptic seizures.

Accordingly, additional results for the proposed DL ar-
chitecture with a 10-second frame are presented below.
Figure 2 illustrates the ROC curve and confusion ma-
trix of the proposed 1D-CNN Bi-LSTM attention model
based on EEG signals with a 10-second time frame. As
shown, the proposed DL architecture achieved strong
performance in epileptic seizure detection.

Table 3. Results for the proposed DL model based on EEG Signals with a 5s time frame

MeantSD
DL Models T . -
Accuracy Sensitivity Specificity Precision F1
1D-CNN 0.8105+0.1332 0.7139+0.2697 0.9344+0.1084 0.9548+0.0629 0.7786+0.1938
1D-CNN Bi-LSTM 0.9844+0.0067 0.9807+0.0150 0.9895+0.0052 0.9920+0.0041 0.9862+0.0061
1D-CNN Bi-LSTM 0.9900+0.0035 0.9932+0.0093 0.9859+0.0092 0.9894+0.0068 0.9913+0.0031
attention
poras)
Table 4. Results for the proposed DL model based on eeg signals with a 10s time frame
MeantSD
DL Models
Accuracy Sensitivity Specificity Precision F1
1D-CNN 0.9818+0.0051 0.9825+0.0137 0.9809+0.0146 0.9856+0.0109 0.9839+0.0046
1D-CNN Bi-LSTM 0.9876+0.0078 0.9826+0.0136 0.9843+0.0052 0.9956+0.0040 0.9890+0.0070
1D-CNN Bi-LSTM attention 0.9949+0.0016 0.9959+0.0017 0.9936+0.0024 0.9952+0.0018 0.9955+0.0014
LLED L

Barzegar MM, et al. Explainable EEG-Based Epileptic Seizure Detection with CNN-Bi-LSTM. JRH. 2025; 15(Special Issue: Artificial Intelligence):779-792.




Im'ﬂi! ng o "j’! aalth
ovu Il Ul ey va e Tavdnens

2025. Volume 15. Special Issue: Artificial Intelligence

Table 5. Results for the proposed DL model based on eeg signals with a 15s time frame

MeanzSD
DL Models
Accuracy Sensitivity Specificity Precision F1
1D-CNN 0.9839+0.0027 0.9928+0.0061 0.972210.0126 0.9792+0.0094 0.9859+0.0024
1D-CNN Bi-LSTM 0.9825+0.0024 0.9820+0.0112 0.9828+0.0153 0.9874+0.0109 0.9846+0.0019
1D-CNN Bi-LSTM attention 0.9929+0.0046 0.997240.0023 0.9872+0.0116 0.990340.0091 0.9937+0.0041
LAt

Next, the results of XAI methods, including t-SNE and
SHAP models, are presented to provide further insights
into the proposed method [25, 26]. By reducing high-
dimensional EEG data to a lower-dimensional space,
t-SNE facilitates the visualization of complex patterns
and relationships in seizure data, enabling clinicians to
understand the fundamental features that distinguish dif-
ferent types of seizures. This interpretability is critical
for practitioners, as it provides insights into the model’s
decision-making process and allows for a more informed
evaluation of the classifications produced by the pro-
posed DL model. Figure 3 displays the results of the t-
SNE method for the proposed DL architecture based on
5-fold cross-validation technique.

The interpretability of the proposed model was assessed
using SHAP, which is a unified framework to explain
predictions based on cooperative game theory. SHAP
assigns a unique importance value to each feature, rep-
resenting its average marginal contribution to the mod-
el’s prediction across all possible feature combinations.
This, in turn, helps us understand the local behavior of

(a)

Figure 2. a) ROC curve b) confusion matrix for the proposed method based on EEG signals with a 10s time frame

which specific features drive individual classification
decision [26]. The results of the SHAP model as an XAl
technique are shown in Figure 4. Figure 4a presents the
SHAP summary bar plot, which displays the absolute
mean SHAP values for each feature. This identifies the
most influential EEG channels—PZA2, F3C3, P4A2,
C3P3, and T3T5—in detecting epileptic seizures using
the proposed DL model. These channels were located
in the frontal, temporal, and parietal regions, which is
consistent with neurophysiological evidence. Figure 4b
also shows the SHAP Beeswarm plot, which illustrates
the full distribution of SHAP values for each feature and
indicates how increases or decreases in feature values af-
fect the probability of seizure detection. The color of the
dots represents feature values (blue for low, red for high).
For important features, such as PZA2, F3C3, and P4A2,
high feature values (red points) generally correspond to
positive SHAP values, thereby increasing the likelihood
of seizure prediction. This behavior aligns with typical
EEG patterns during seizures, including increased am-
plitude, sharp waves, and burst activity.

(b)
[T12 1|
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(a) (b) ()

Figure 3. Results of t-SNE method for the proposed DL model

Discussion

Epileptic seizures are among the most well-known
neurological disorders caused by abnormal electrical
discharges in brain neurons [2-4]. This condition is as-
sociated with transient seizures throughout the day and
poses serious health risks to patients, including fainting,
anesthesia, and loss of muscle control [1-3]. Generally,
neurologists diagnose epileptic seizures by examining
abnormal amplitudes on EEG waveforms, a task that is
very time-consuming and associated with human error
[7, 8]. Because EEG signals are non-linear and contain

Figure 4. XAI plots
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(d) (e)
LAl

various artifacts, their visual analysis is challenging for
expert clinicians. Additionally, EEG signals are usually
recorded over long periods and with different sampling
frequencies, making accurate visual observation ex-
tremely time-consuming for doctors [9-11]. Moreover,
EEG signals are captured through multiple channels, fur-
ther complicating the data used for diagnosing epileptic
seizures.

In recent years, Al techniques, particularly DL models,
have garnered attention from researchers for diagnosing
epileptic seizures from EEG signals [9, 10]. This study in-

(b)
LR K,
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Table 6. A comparison of the results presented in this article with those of other related studies

Ref. Dataset Subjects Deep Learning Model Classifier Performance
[35] Turkey 71 healthy, 50 PCC+positional Sigmoid Acc=85, Sen=82, Spec=87
patient encoding+transformer model
[41] CHB-MIT 24 patient GAT+Bi-LSTM Softmax Acc=98.52, Sen=97.75, Spec=94.34
[42] Bonn Univer- 5 different sets Self-organizing neural Sigmoid Acc=99.20, Prec=98, Recall=100
sity of EEG signals network+MLP+genetic algorithm

[43] CHB-MIT 16 patient 3D-DCAE+Bi-LSTM Sigmoid Acc=99.08, Sen=99.21, Spec=99.11
[44] CHB-MIT 24 patient Superlet transform+VGG19 Softmax Acc=94.30, Sen=94.50, Spec=94
[45] CHB-MIT 22 patient Bi-GRU Sigmoid Acc=98.49, Sen=93.89, Spec=98.49
[46] CHB-MIT 24 patient Inception and residual model Softmax Acc=98.34, Sen=73.08, Spec=98.79
[47] CHB-MIT 24 patient CNN Softmax Acc=96.99, Sen=97.06, Spec=96.89
Our Turkey 71 healthy, 50 1D-CNN Bi-LSTM attention Sigmoid Acc=99.49, Sen=99.59, Spec=99.36
Work patient

troduced a new method for diagnosing epileptic seizures
based on a 1D-CNN Bi-LSTM attention architecture.
The proposed method encompassed several sections:
dataset preparation, preprocessing, feature extraction,
classification, and post-processing. The implementation
and evaluation of this method were conducted using a
Turkish epilepsy dataset [35]. Initially, preprocessing
steps, such as band-pass filtering (0.5-48 Hz), down-
sampling to 250 Hz, re-referencing using CAR, and seg-
menting were applied to the EEG signals. Subsequently,
the proposed DL model was implemented for extracting
spatial-temporal features from the preprocessed EEG
signals. Finally, the t-SNE method and SHAP [25, 26]
were employed as a post-processing step to visualize the
space of the extracted features. In Table 6, we presented
the results of papers on diagnosis of epileptic seizures
and compared them with our proposed method. As ob-
served, our proposed method demonstrated significant
results compared to other research.

In the future, the proposed method could serve as prac-
tical software in hospital settings to assist specialist doc-
tors in the rapid diagnosis of epileptic seizures based on
EEG signals. Recently, some researchers have utilized
new attention mechanism architectures, especially at-
tention-graph models [48, 49] and transformer models
with mutual learning architectures [50, 51], in medical
applications. For future work, these DL networks could
be applied to the diagnosis of epileptic seizures. It has
been demonstrated that Graph DL networks have been
highly successful in diagnosing brain disorders from
EEG signals [52, 53]. For further work, the use of new
graph architectures, such as multi-layer graph attention

Ll

networks (MGANet) [54], spatial-temporal graph at-
tention networks with transformer encoders (STGATE)
[55], and adaptive gated graph convolutional networks
(AGGCN) [56] should be considered for detecting epi-
leptic seizures.

Conclusion

In conclusion, epileptic seizures pose significant health
challenges and are traditionally diagnosed through
time-consuming and error-prone EEG analysis. The
integration of advanced deep learning models, such as
the proposed 1D-CNN Bi-LSTM attention architecture,
demonstrates promising improvements in accurately de-
tecting seizures from EEG signals. The study’s results
indicate that this approach outperforms existing meth-
ods, highlighting its potential for clinical application. Fu-
ture research should explore incorporating cutting-edge
attention mechanisms and graph-based neural networks
to further enhance diagnostic accuracy and facilitate
practical deployment in medical settings.
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