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Review Paper
Applications of Wavelet transforms in Radiomic 
Feature Extraction from Medical Images: A 
Systematic Review

Background: Radiomics relies on quantitative information extracted from medical images 
to enhance clinical decision-making; however, it is subject to noise, artifacts, and varying 
imaging protocols, all of which affect its reliability. Wavelet transforms provide a solution by 
allowing images to be decomposed into multiscale frequency components while retaining spatial 
information. Compared to classical preprocessing methods, this work highlights the necessity of 
an overall precondition framework for using wavelet transforms in radiomics.

Methods: In this study, we conducted a review by systematically searching databases, such 
as PubMed, IEEE Xplore, Web of Science, and Scopus for peer-reviewed articles published 
between January 2015 and February 2025. We focused on keywords, like “wavelet transform,” 
“radiomics,” “feature extraction,” and specific imaging modalities, such as “CT,” “MRI,” and 
“PET.” We selected studies based on their relevance to wavelet-based radiomics and evaluated 
their quality using a modified QUADAS-2 tool. 

Results: Our findings indicated that wavelet transforms can significantly enhance the 
reproducibility of radiomic features, minimize sensitivity to noise, and improve the detection of 
textural and morphological patterns in CT, MRI, and PET imaging. However, in certain situations, 
alternative methods, like empirical mode decomposition or short-time Fourier transform may 
yield better results. Wavelet transforms often surpass traditional Fourier transform techniques by 
offering localized and scale-dependent decomposition, even though they come with increased 
computational demands. 

Conclusion: This review offers a thorough framework for wavelet-based radiomics, merging 
mathematical concepts with practical implementation strategies. It contributes to the field by 
providing clear approaches for optimizing parameters and extracting features, ultimately aiding 
researchers and clinicians in enhancing medical imaging analysis for precision medicine.
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Introduction

edical imaging techniques, such as CT, 
MRI, and PET play a crucial role in 
facilitating accurate diagnosis, treat-
ment planning, and monitoring [1]. 
Radiomics enhances these capabilities 

by extracting quantitative features from images, which 
provide valuable insights into tissue characteristics and 
disease progression, ultimately supporting personalized 
medicine. However, the field of radiomics faces several 
challenges, including sensitivity to noise and issues with 
reproducibility across different imaging protocols [2]. 

Wavelet transforms offer a solution to these challenges 
by breaking down images into multiscale frequency 
components. This approach helps preserve spatial details 
and enhances the robustness of features compared to 
traditional methods, like Fourier transform. Despite their 
advantages, wavelet methods can introduce computational 
complexity and difficulties in parameter selection, which 
can limit their widespread application [3]. 

Wavelet-based techniques, grounded in mathematical 
principles, enable detailed analysis for extracting mul-
tiresolution radiomic features. They are particularly ef-
fective in detecting subtle patterns and ensuring the re-
producibility of features. Ongoing advancements make 
these methods even more efficient [4]. When wavelet 
transforms decompose an image into approximation 
(low-frequency) and detail (high-frequency) compo-
nents, they allow for the isolation of meaningful struc-
tural data while reducing noise and irrelevant variance 
[5, 6]. This dual capability makes wavelets an optimal 
tool for radiomics, especially since biologically relevant 
features need to be platform-agnostic, considering the 
challenges posed by data heterogeneity across institu-
tions and imperfections in imaging modalities [7].

This review describes wavelet transforms role in ex-
tracting robust radiomic features from CT, MRI, and 
PET images. We outline practical workflows using 
PyWavelets and MATLAB, address challenges, like 
parameter selection, computational complexity, and 
standardization, and propose adopting IBSI guidelines 
for standardized analysis. This review aimed to guide 
researchers and clinicians to enhance precision medicine 
through improved medical imaging analysis.

Methods

This review systematically evaluated the application 
of wavelet transforms for radiomic feature extraction in 

medical imaging, focusing on their mathematical foun-
dations and practical implementation. The review ad-
hered to a structured methodology to ensure comprehen-
sive coverage of relevant literature, as outlined below.

Comparison with existing reviews

This review stands out from previous literature by 
providing a specialized and in-depth review of wavelet 
transforms, with a particular focus on their application 
in medical images for radiomic feature extraction, a role 
that has not been extensively covered elsewhere. Grob-
belaar et al. concentrate on utilizing wavelet transforms 
for denoising EEG signals [8], while Guo et al. trace the 
evolutionary history of wavelet theory and examine its di-
verse properties in detail [9]. Manikandan and Dandapat 
investigate wavelet-based techniques for ECG compres-
sion, evaluating their effectiveness [10], and Serhal et al. 
offer a comprehensive review of AI models applied to 
analyze atrial fibrillation using wavelet transform [11]. In 
contrast, Shuvo et al. address a broader spectrum, encom-
passing the analysis of both medical signals and images 
across various healthcare applications [12]. The innova-
tion of this approach lies in the detailed examination of 
various wavelet transform transforms—discrete (DWT), 
continuous (CWT), tunable q-factor wavelet transform 
(TQWT), and advanced transforms—that are specifical-
ly designed for radiomics applications and achieve high 
performance metrics. Furthermore, the integration of ma-
chine learning (ML) and deep learning (DL) with wavelet 
transform, provides significant insights, making it a valu-
able resource for advancing radiomics research and clini-
cal practice. As shown in Table 1, this review uniquely 
focused on radiomics in medical images, filling a gap in 
the existing literature.

Search strategy

A systematic literature search was conducted using 
PubMed, IEEE Xplore, Web of Science, and Scopus data-
bases to identify peer-reviewed articles published between 
January 2015 and February 2025. The search utilized a 
combination of keywords, including “wavelet transform”, 
“radiomics”, “feature extraction”, “medical imaging”, 
“multiresolution analysis”, “2D DWT”, “3D DWT”, “tex-
ture analysis”, and “image preprocessing”. These terms 
were refined with modality-specific keywords (e.g. “CT”, 
“MRI”, “PET”) to target studies relevant to medical imag-
ing applications. Boolean operators (AND, OR) were em-
ployed to combine terms, and filters were applied to limit 
results to English-language articles and peer-reviewed 
journals. Additional sources were identified through man-
ual screening of reference lists from key articles.

M
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Figure 1 outlines the stages of identification, screening, 
eligibility, and inclusion, with reasons for exclusions at 
each stage.

Selection criteria

Studies were included if they: 1) focused on the ap-
plication of wavelet transforms in radiomic feature ex-
traction for medical imaging, 2) provided mathematical 
or practical insights into wavelet transform implementa-
tions (e.g. 2D or 3D discrete wavelet transform), 3) ad-
dressed textural or morphological feature extraction in 
modalities, such as CT, MRI, or PET, and 4) were pub-
lished within the specified timeframe. Exclusion criteria 
encompassed: 1) studies lacking a clear focus on wave-
let-based radiomics, 2) non-peer-reviewed sources (e.g. 

conference abstracts, editorials), 3) studies not involving 
medical imaging, and 4) articles not available in English. 
The selection process is summarized in a flow diagram 
(Figure 1), detailing the number of studies screened, in-
cluded, and excluded at each stage. The inclusion and 
exclusion criteria based on the PICOS framework (popu-
lation, intervention, comparison, outcome, study design) 
are given in Table 2. This PICOS-based table comple-
ments the PRISMA flow diagram (Figure 1), ensuring a 
structured approach to study selection.

Data extraction

To ensure consistency, we extracted data from the in-
cluded studies using a standardized template. The in-
formation gathered included: 1) the type of study (such 

Table 1. Comparative summary of existing reviews on wavelet applications

Authors (y) Main Objective
Type of 
Medical 

Data

Types of Wavelet 
Transforms

No. of 
Citations Other Aspects

Grobbelaar et 
al. (2022) [8]

Survey denoising techniques 
for EEG signals using wavelet 

transform
EEG signals General wavelet 

denoising methods 101
Focus on noise removal in 

neurophysiology; limited to 
EEG; no radiomics emphasis

Guo et al. 
(2022) [9]

Review development history 
and properties of wavelet 

theory

General 
signals

Various wavelet 
constructions 410

Broad theoretical overview; 
not medical-specific; chal-
lenges and opportunities 

discussed

Manikandan 
and Dandapat 

(2014) [10]

Prospective review of 
wavelet-based ECG compres-

sion methods
ECG signals Wavelet-based com-

pression techniques 153

Emphasis on compression 
performance; ECG-specific; 
performance metrics evalu-

ated

Serhal et al. 
(2021) [11]

Overview of wavelet and AI 
for atrial fibrillation predic-

tion/detection on ECG
ECG signals Wavelets with AI for 

atrial fibrillation 54
Integration with AI; focused 
on atrial fibrillation; predic-

tion and classification

Shuvo et al. 
(2025) [12]

Systematic review of wavelet 
and AI in healthcare

Medical 
signals and 

images

Wavelet transforma-
tion with AI 0 (new)

Broad healthcare applica-
tions; includes signals and 
images; systemic review 

approach

Table 2. Inclusion and exclusion criteria based on the PICOS framework

PICOS Element Inclusion Criteria Exclusion Criteria

Population Studies on medical imaging data (e.g. CT, MRI, PET) for 
radiomics in human diseases

Studies not involving medical imaging or radiomics; 
non-human or non-clinical data

Intervention Application of wavelet transforms (e.g. DWT, CWT, 
2D/3D) for feature extraction

Studies without wavelet transforms or not focused 
on radiomic feature extraction

Comparison
Comparisons with classical methods (e.g. Fourier 
Transform) or no comparison required if wavelet-

focused

Studies without relevance to wavelet-based ra-
diomics comparisons

Outcome
Outcomes related to feature reproducibility, noise re-
duction, texture/morphology detection, or diagnostic 

performance

Outcomes not related to radiomics features or 
medical imaging analysis

Study design Peer-reviewed articles, systematic reviews, method-
ological studies (2015–2025)

Non-peer-reviewed (e.g. abstracts, editorials), non-
English, pre-2015 or post-2025
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as methodological or applied), 2) the imaging modality 
used (CT, MRI, or PET), 3) the type of wavelet filter ap-
plied (like Haar, Daubechies, or Symlets), 4) the specific 
radiomic features extracted (for example, intensity-based 
features, gray-level co-occurrence matrix [GLCM], or 
shape-based features), 5) the computational tools utilized 
(such as PyWavelets or MATLAB), and 6) the reported 
outcomes (including feature reproducibility and diag-
nostic performance). For studies that involved practical 
implementations, we also recorded details about prepro-
cessing steps, decomposition levels, and feature extrac-
tion workflows. Two reviewers independently extracted 
the data, and any discrepancies were resolved through 
discussion to ensure accuracy.

Quality assessment

We assessed the quality of the included studies us-
ing a modified version of the quality assessment of di-
agnostic accuracy studies (QUADAS-2) tool, adapted 
for radiomics research. The evaluation focused on: 1) 
the clarity of the methodology (for instance, how well 
the wavelet transform implementation was described), 

2) the robustness of the results (such as reproducibility 
across different imaging protocols), 3) the relevance to 
radiomics applications, and 4) adherence to standard-
ized reporting practices, like the image biomarker stan-
dardization initiative (IBSI) guidelines. Based on these 
criteria, studies were categorized as high, moderate, or 
low quality, with only high- and moderate-quality stud-
ies included in the final synthesis to ensure reliability.

Risk of bias assessment

To systematically evaluate the potential for bias in the 
included studies, we conducted a risk of bias assessment 
using a tailored framework adapted from the QUA-
DAS-2 tool and radiomics-specific guidelines. This as-
sessment focused on four key domains:

Selection bias: We examined whether the study popula-
tions were representative of the target clinical scenarios 
and whether inclusion/exclusion criteria were clearly de-
fined. Studies with narrowly defined cohorts or lacking 
modality-specific justification were flagged as high risk.
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Figure 1. Flow diagram illustrating the study selection process for the systematic review on wavelet filters in radiomic feature extraction
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Performance bias: We evaluated the transparency and 
reproducibility of wavelet transform implementation, 
including the choice of wavelet type, decomposition lev-
els, and preprocessing steps. Studies that failed to report 
these parameters or used non-standardized workflows 
were considered as higher risk.

Detection Bias: We assessed whether the radiomic 
features extracted were validated against clinical or 
biological outcomes. Studies lacking validation or rely-
ing solely on internal metrics (e.g. area under the curve 
[AUC] without external testing) were marked as moder-
ate to high risk.

Reporting bias: We reviewed adherence to reporting 
standards, such as the IBSI. Studies that omitted key 
methodological details or failed to disclose software 
tools and parameter settings were considered at risk of 
incomplete reporting.

Each study was independently reviewed by two au-
thors, and disagreements were resolved through con-
sensus. The overall risk of bias was categorized as low, 
moderate, or high based on the cumulative assessment 
across domains.

Data analysis

We comprehensively provided an overview of how 
wavelet filters are applied in radiomics. The analysis fo-

cused on: 1) practical workflows for feature extraction 
across different imaging modalities, and 2) challenges, 
such as parameter selection and standardization. We 
grouped studies by modality (CT, MRI, and PET) and 
wavelet type to identify patterns in feature extraction and 
implementation strategies. Key findings were summa-
rized in tables to facilitate comparison. We highlighted 
qualitative trends in feature reproducibility, noise reduc-
tion, and clinical applicability. This narrative synthesis 
integrates theoretical insights with practical guidance, 
bridging mathematical rigor with real-world applications 
in radiomics.

Results

The mathematical foundations of wavelet trans-
forms

The mathematical foundations of wavelet transforms, 
which include CWT, DWT, and multiresolution analysis 
allows us to concentrate on practical applications [13-
15]. These foundational concepts highlight the unique 
advantages of wavelet transforms in the field of ra-
diomics, providing superior time-frequency analysis and 
localized, scale-dependent decomposition compared to 
traditional methods, like the Fourier transform. This ca-
pability facilitates the robust extraction of biologically 
relevant features, thereby enhancing the practical imple-
mentation of wavelet-based radiomic workflows [16].

10 
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Wavelet transforms in radiomic feature extraction

Wavelet transforms have become a cornerstone of ra-
diomics, enabling multiscale decomposition of medical 
images to extract biologically meaningful features. To 
examine this important issue in recent years, a PubMed 
search using the keywords “wavelets and radiomics” 
from 2015 to 2025 can show the status and trend of pub-
lishing articles in this field (Figure 2). This section high-
lights the role of wavelets in texture enhancement, noise 
reduction, feature diversity, advanced transform design, 
and clinical applications.

Wavelet transforms enhance the detection of subtle tex-
tural and morphological patterns often missed by con-
ventional methods [17]. Texture, defined as the spatial 
arrangement of pixel intensities, is essential for distin-
guishing healthy from pathological tissue [18]. Through 
decomposition into approximation and detail subbands 
[19], wavelets capture both broad structural patterns 
(e.g. tumor shape) and fine-grained details (e.g. edges, 
granularity) [20, 21]. This multiscale capability allows 
radiomics to integrate microscopic and macroscopic fea-
tures [22, 23].

Wavelet decomposition improves feature robustness 
by isolating high-frequency noise into detail subbands, 
allowing selective filtering while preserving signal in-
tegrity [24-26]. This is particularly beneficial in noisy 
imaging environments or multi-center studies [27]. 
Wavelet-based features have demonstrated higher repro-
ducibility across scanners and protocols, supporting their 
clinical reliability [28, 29].

Wavelet transforms facilitate the extraction of diverse 
radiomic features across decomposition levels. Ap-
proximation subbands yield intensity metrics (e.g. mean, 
variance) [30], while detail subbands support texture 
analysis via GLCM-derived metrics, like contrast and 
entropy [31]. Shape features, such as compactness and 
eccentricity, are refined through edge detection in detail 
components [32, 33]. A typical three-level DWT yields 
eight subbands, each offering unique insights into image 
structure [14].

Beyond classical DWT and CWT, advanced trans-
forms enhance radiomic performance. The dual-tree 
complex wavelet transform (DTCWT) improves di-
rectional selectivity and shift-invariance, aiding feature 
extraction in MRI and PET [34]. The TQWT wavelet 
transform (TQWT) allows adaptive tuning for modality-
specific tasks, like tumor heterogeneity analysis [12]. 
These methods address limitations, such as boundary ef-

fects and noise sensitivity, and are increasingly adopted 
in radiomics workflows.

Wavelet-based radiomics has shown promise across 
CT, MRI, PET, and ultrasound:

In CT, wavelet features improve classification of he-
patocellular carcinoma [35], enhance pulmonary lesion 
grading in COVID-19 [19], and predict treatment re-
sponse in rectal cancer [36].

In MRI, DWT features combined with convolutional 
neural network (CNNs) support brain tumor classifica-
tion [37], while 3D wavelet filters aid glioma grading 
[38].

In PET, wavelet features enhance biclustering in breast 
cancer [39] and enable parametric imaging with im-
proved filtering [40].

In ultrasound, wavelet decomposition differentiates 
malignant from benign prostate tissue [41]. These stud-
ies underscore the diagnostic and predictive value of 
wavelet integration in radiomics.

Wavelet transforms enrich radiomic analysis by cap-
turing textural and structural characteristics, improving 
robustness, and enabling multiscale feature representa-
tion. Their versatility across CT, MRI, and PET imaging 
modalities further validates their utility [42]. The follow-
ing sections provide practical guidance for integrating 
wavelet transforms into radiomics workflows.

Practical guide to implement wavelet transforms 
in radiomics workflows

The application of wavelet transforms into radiomics 
workflows needs to be systematic to ensure that ex-
tracted features are interpretable and reproducible. This 
section presents a step-by-step guide as to how to apply 
wavelet transforms from preprocessing to feature selec-
tion, as well as useful tools and practical examples. By 
following these steps, researchers and practitioners can 
use the wavelet transforms in radiomics workflow for 
various imaging modalities and also address the chal-
lenges of computing large volumes of medical images. 
A summary of these steps is represented in Figure 3. 
The Haar wavelet, known for its simplicity and blocky 
structure, effectively captures abrupt changes and edges. 
Daubechies wavelets, characterized by vanishing mo-
ments, are suited for texture analysis and noise reduction, 
while Symlets provide a symmetric alternative preserv-
ing signal symmetry. The DWT decomposes images into 
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subbands (e.g. LL, LH, HL, and HH) for detailed analy-
sis. Texture features can be extracted using the GLCM, a 
statistical method based on pixel intensity relationships. 
The IBSI ensures consistent imaging biomarker extrac-
tion. Principal component analysis (PCA) reduces fea-
ture dimensionality while maintaining variance.

Step-by-step process for applying wavelet trans-
forms

Image preprocessing and normalization

Medical imaging preprocessing can be divided into 
low-level and high-level techniques. Low-level prepro-
cessing typically involves steps, such as filtering, reg-
istration, normalization, and segmentation to prepare 
the raw medical images. In contrast, high-level prepro-
cessing methods, such as wavelet transform models or 
empirical mode decomposition techniques, are applied 
to further enhance data quality, thereby improving the 
accuracy of diagnosis and prognosis.

Selection of wavelet type and decomposition 
levels

The choice of wavelet type and decomposition lev-
els is crucial in analysis. Haar is best for sharp edges, 
while daubechies (DB) and Symlets suit gradual transi-
tions and textures. The number of levels (usually 1–4 for 
2D images) depends on the desired scale of detail, with 
lower levels capturing finer, high-frequency features and 
higher levels representing coarser, low-frequency com-
ponents. Image size constrains the maximum number of 
levels (e.g. a 256×256 image allows up to 8 levels). Op-
timal selection requires testing different configurations 
and validating against reference data.

Application of the wavelet transform and feature 
extraction

The preprocessed image, whether 2D (CT/MRI slice) 
or 3D (volume), undergoes a DWT to decompose it into 
multiple sub-bands. In 2D, DWT produces four sub-
bands (LL, LH, HL, HH), with multilevel decomposition 
applied recursively to LL for finer analysis. In 3D, eight 
sub-bands are generated (low-low-low [LLL] and seven 
detail sub-bands across spatial dimensions), with repeat-
ed decomposition of LLL for multi-resolution analysis. 
Feature extraction may use LL or LLL for global inten-
sity metrics, while detail sub-bands (LH/HL/HH in 2D, 
and the seven high-frequency components in 3D) pro-
vide rich information for texture analysis (e.g. GLCM, 
LBP) and shape descriptors. Features follow standards, 
like IBSI for consistency across 2D and 3D analyses.

Post-processing and feature selection

After feature extraction, the dataset is refined by re-
moving irreproducible features, reducing dimensionality 
through methods, like PCA or correlation filtering, and 
normalizing data for ML. Irreproducible features refer to 
those with low stability across repeated measurements 
or high sensitivity to noise, often assessed using metrics, 
like ICC or COV. This ensures a reliable, focused feature 
set for further analysis.

Software tools and libraries for implementation

The field of wavelet-based radiomics has benefited sig-
nificantly from a growing suite of accessible tools and 
software, which streamline workflows for researchers 
and clinicians. These platforms facilitate each stage of 
the radiomics pipeline, from preprocessing and wavelet 
decomposition to feature extraction and post-processing, 
thereby broadening access and reducing technical barri-
ers. A brief overview of commonly used tools is shown 
in Figure 4. 

Python and MATLAB are the most popular platforms 
for wavelet-based radiomics. Python is favored for its 
open-source libraries (e.g. PyWavelets, PyRadiomics) 
and integration with ML, while MATLAB is preferred 
for its user-friendly interface and powerful wavelet tool-
box for medical image analysis.

Wavelet transforms are widely implemented in Python 
via the PyWavelets library and in MATLAB using the 
wavelet toolbox, both providing functions for signal de-
composition and reconstruction, such as wavedec and 
waverec. Common wavelet families, including Haar, 
Daubechies, and Symlet, can be applied in both environ-
ments, with adjustable filter orders (e.g. dbn with vary-
ing n). These transforms serve diverse applications, like 
signal compression, denoising, and feature extraction. 
[53-56].

Worked examples with sample datasets

CT (Lung Nodule): Segment a 64x64 ROI from a lung 
CT scan (e.g. LIDC-IDRI dataset). Normalize pixel 
intensities to [0, 1], apply a 2-level Daubechies (db4) 
DWT, and extract GLCM contrast from the HH2 sub-
band (The “2” in “HH2” indicates the second level of 
decomposition). The result was an enhanced texture of 
nodule boundaries, which aids in the classification of 
malignancy [57].
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MRI (brain tumor): Preprocess a 128×128 T2-weight-
ed MRI slice (e.g. BraTS dataset, resampled to 1 mm³ 
isotropic voxel spacing). Apply a 3-level Symlet (sym4) 
DWT, and compute entropy from the LH3 subband. The 
result demonstrates improved detection of tumor hetero-
geneity, thereby supporting enhanced segmentation ac-
curacy [58].

PET (tumor standardized uptake value (SUV) Analy-
sis): Normalize a 32×32 ROI from a PET scan slice (e.g. 
TCIA dataset). Apply a 1-level Haar DWT, and extract 
mean intensity from the LL1 subband. The result enables 
the quantification of tumor metabolic activity, facilitat-
ing more accurate lesion characterization [59].

To provide an overview of recent advancements in 
wavelet-based techniques for medical imaging, we sum-
marized key studies focusing on their methodologies, 
software tools, findings, and limitations. Table 3 pres-
ents a brief comparison of these studies, highlighting 
their contributions to applications, such as denoising, 
segmentation, classification, and image fusion across 
various imaging modalities, including CT, MRI, and ul-
trasound. In order to avoid making the table too long, 
these studies were randomly selected from the 62 articles 
mentioned in the “Methods” section.

Tips for optimizing computational efficiency and 
managing large datasets 

This section provides practical strategies to enhance 
computational efficiency and handle large medical im-
aging datasets in wavelet-based radiomics, ensuring 
scalable and resource-effective analysis [80].

Key approaches include downsampling large images 
(e.g. reducing resolution from 512×512 to 256×256 
when fine details are not critical) to balance accuracy 
and speed, employing parallel processing in Python or 
MATLAB to apply DWT across multiple ROIs or 3D 
slices simultaneously, limiting decomposition levels to 
3 or 4 to avoid excessive computational burden with di-
minishing returns, managing memory by processing 3D 
volumes slice-by-slice and saving subbands to disk in 
formats, like HDF5, and utilizing batch processing with 
cloud computing for efficient handling of clinical-scale 
datasets.

Following the guideline, practitioners will have a good 
chance of implementing wavelet transforms in their ra-
diomics, according to modality and research objective 
preferences. It is the mixture of the careful pre-process-
ing, the wise choice of wavelets, and the easy calculation 
that produces scientifically strong and clinically action-
able features for more profound interrogation of medical 
imaging data. Table 4 provides perspectives pertaining to 
the choice of wavelet transforms as refracted by image 
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Figure 3. Steps in radiomics feature extraction and applying wavelet transforms.  

 

Software Tools and Libraries for Implementation 

The field of wavelet-based radiomics has benefited significantly from a growing suite of accessible tools 

and software, which streamline workflows for researchers and clinicians. These platforms facilitate each 

stage of the radiomics pipeline, from preprocessing and wavelet decomposition to feature extraction and 

post-processing, thereby broadening access and reducing technical barriers. A brief overview of commonly 

used tools is shown in Figure 4.  

Image Preprocessing 
and Normalization

Remove noise (e.g., 
thresholding, ROI 
segmentation)

Normalize pixel 
intensities (e.g., [0, 1] 
or z-score)

Resample 3D images 
to isotropic voxel 
spacing (e.g., 1 mm³)

Selection of Wavelet 
Type and 

Decomposition Levels

Choose wavelet type 
(e.g., Haar for edges, 
Daubechies/Symlets 
for textures) based on 
image characteristics

Determine 
decomposition levels 
(1-4 for 2D, max 8 for 
256x256 images) 
based on feature scale

Validate with a 
reference dataset

Wavelet Transform and 
Feature Extraction

Apply 2D/3D DWT to 
obtain subbands (e.g., 
LL, LH, HL, HH for 
2D; LLL, LLH, etc., 
for 3D)

Extract features (e.g., 
mean, GCLM, shape 
per IBSI standards.

Post-Processing and 
Feature Selection

Assess feature 
reproducibility with 
statistical tests

Reduce dimensionality 
using PCA or 
correlation filtering

Normalize for 
integration with 
machine learning 
models

Figure 3. Steps in radiomics feature extraction and applying wavelet transforms
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characteristics and the kind of radiomics features, based 
on ongoing research and practical applications. With 
that in mind, the document attempts to provide thorough 
guidelines for users, especially those using medical im-
aging and radiomics, to inform their choices. However, it 
is not without difficulties, which will be discussed in the 
following challenges and considerations section about 
realizing these effects.

Challenges and future directions 

Wavelet transforms offer significant advantages for 
radiomic feature extraction, yet their implementation is 
accompanied by challenges that affect quality, reproduc-
ibility, and interpretability. To ensure clinically action-
able and robust wavelet-based radiomics, these chal-
lenges must be addressed systematically. This section 
summarizes key constraints and outlines future direc-
tions to overcome them.

Parameter selection: Choosing appropriate wave-
let functions and decomposition levels

Selecting the optimal wavelet function and decom-
position level is inherently complex. Different wavelet 
families (e.g. haar, daubechies, symlets) possess distinct 
properties, and no single type universally suits all imag-
ing modalities or clinical questions. For instance, Haar 
may suit for sharp CT edges but underperform in MRI 
transitions. Similarly, decomposition levels must bal-
ance detail capture against noise amplification or reso-
lution limits (e.g. ~6 levels for a 64×64 image). This 
selection often relies on empirical judgment, introduc-
ing subjectivity and inter-study variability [73, 86, 87]. 
To mitigate this, future work should employ data-driven 
optimization strategies, such as cross-validation and 
phantom-based benchmarking to guide wavelet selec-
tion. Transparent documentation of choices will enhance 
reproducibility [1, 88].

PyWavelets (Python)
• Supports Haar, Daubechies
• Integrates with PyRadiomics; For reproducible 

workflows.

MATLAB Wavelet Toolbox
• 1D/2D/3D analysis
• GUI and scripting
• Denoising and feature extraction

ITK
• Open-source for image processing
• Wavelet transforms
• Suited for 3D MRI/CT

3D Slicer
• Extensible platform
• Use with PyWavelets plugins
• For medical image analysis

Wavelet Toolbox in R
• Wavelet transforms
• Feature extraction
• Alternative for R users

Custom Implementations
• Personalized pipelines
• GPU acceleration with CUDA

Figure 4. Commonly used computational tools in wavelet-based radiomics [4, 43-52]
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Table 3. Summary of wavelet-based methods in medical imaging

Authors Methodology Software 
(Language) Key Findings Limitations Summary Outcomes

Apte et al. 
2019 [60]

Extension of CERR 
for radiomics: Batch/

vectorized feature cal-
culation; IBSI compli-
ance; cross-validation 
with ITK/PyRadiomics; 
integration with MIM 

via MATLAB API

MATLAB (CERR 
platform)

3.5× speedup for 
Haralick texture 
(32 bins); identi-
fied errors/differ-
ences in feature 
definitions; re-

producible across 
packages

Requires 
MATLAB; 
scalability 
limits for 
very large 
datasets

Comprehen-
sive MAT-
LAB-based 

platform for 
reproducible 

radiomics with 
emphasis on 
speed and 

clinical integra-
tion

IBSI-compliant 
features; superior 
speed (3.5×) and 

reproducibility for 
texture analysis

Bagher-
Ebadian et al. 

2017 [61]

Effect of smooth-
ing, sharpening, and 

Gaussian noise on CT/
CBCT radiomics fea-
tures (18 oropharyn-
geal cancer patients)

MATLAB (in-house 
scripts)

Features variably 
sensitive to noise 

and filtering; some 
robust across CT/

CBCT

Small 
cohort (18 
patients); 
limited to 
head/neck 

RT

Evaluates 
robustness 

of radiomics 
features to im-
age perturba-
tions in clinical 

CBCT/pCT

Identified 
relatively stable 
features despite 
noise/smoothing 

variations

Benhassine 
et al. 2021 

[62]

DWT-based denoising 
with optimal thresh-
olding via CSA and 

SSO; selection of best 
decomposition level 
and mother wavelet

MATLAB

Achieved up to 
+30 dB PSNR 

improvement for 
Rician noise; out-

performed VisuSh-
rink, Minimax, and 

other standard 
methods

Requires 
reference/

noise 
model; per-
formance 
varies by 
modality

Optimization-
driven wavelet 

denoising 
highly effec-

tive for medi-
cal images, 
especially 

Rician noise

~30 dB PSNR 
gain; improved 
SSIM and MSE 

across mammo-
gram, CT, MRI

Bijari et al. 
2022 [63]

Multidimensional 
radiomics from MRI 
(T1WI, T1C, T2WI, 

FLAIR) with/without 
wavelet transform; 
8 ML classifiers (RF, 

SVM, etc.) for GBM vs 
MET differentiation; 
manual VOI segmen-

tation

Python 
(PyRadiomics, 

scikit-learn)

Wavelet-based 
model: 98% 

accuracy, 99% 
AUC-ROC, 98% F1-
score; significantly 
better than non-
wavelet features

Small 
dataset (91 
patients); 
manual 

segmenta-
tion; single 
institution

Multidimen-
sional DWT 

features cap-
ture hidden 

MRI patterns, 
improving ML 
classification 
of GBM vs. 

MET

Superior clas-
sification (98% 

accuracy) 
using wavelet-en-
hanced radiomics

Chaddad et 
al. 2018 [22]

Multiscale texture 
features from 3D 

wavelet transform of 
multispectral patholo-
gy slides for CRC grad-
ing; ANOVA+random 

forest

MATLAB (wavelet 
toolbox)

12 significant 
multiscale features 
(variance, entropy, 

energy); 93.3% 
accuracy; entropy 

best classifier (AUC 
up to 100% for 

carcinoma)

Pathology-
specific; 

manual seg-
mentation 
of regions

3D-WT multi-
scale textures 

effectively 
discriminate 
CRC grades

93.3% accuracy; 
88.3% sensitiv-

ity; entropy most 
predictive

Chu et al. 
2019 [64] 

Whole-pancreas 
CT radiomics (478 

features, 40 selected) 
for PDAC vs\normal; 
Random Forest clas-

sification; manual 
segmentation

Velocity 
(Varian)+not speci-

fied for feature 
extraction 

99.2% accuracy, 
99.9% AUC; 100% 
sensitivity, 98.5% 

specificity

Manual seg-
mentation; 
retrospec-
tive; age 

mismatch 
between 
PDAC and 
controls

Demonstrated 
pancreas-wide 
radiomics can 
differentiate 

PDAC without 
tumor localiza-

tion

99.2% accuracy in 
binary classifica-

tion

Çinarer et al. 
2020 [38]

3D wavelet radiomic 
features+DNN for 

glioma grading (Grade 
II vs III); feature selec-
tion via Mann–Whit-

ney U

Python (H2O, 
PyRadiomics)+3D 

Slicer

96.15% accu-
racy, 100% recall, 
98.75% AUC; HHH 
filter group most 

discriminative

Manual ROI 
segmenta-
tion; small 

data-
set (121 
patients)

DNN with 
3D wavelet 

features yields 
high accu-

racy for glioma 
grading

96.15% accuracy; 
98.75% AUC

Demircioğlu 
2022 [7]

Effect of preprocess-
ing filters (wavelet, 
LoG, exponential, 
etc.) on radiomics 
predictive perfor-

mance; 7 datasets; 
5 feature selection 

methods; 5 classifiers; 
nested 10-fold CV

Python 
(PyRadiomics, 
scikit-learn)+R

Filters improved 
AUC-ROC up to 

+0.08 (P=0.024); 
tuning added up to 

+0.1; no perfor-
mance loss

High 
feature cor-
relations; 
compu-

tationally 
intensive

Preprocess-
ing filters 

(esp. wavelet) 
enhance 

predictive 
performance 
without harm

Statistically sig-
nificant AUC gains 

(up to +0.08)
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Authors Methodology Software 
(Language) Key Findings Limitations Summary Outcomes

Georgieva et 
al. 2021 [65]

Survey of multidimen-
sional (2D/3D/4D) 
wavelet and tensor 
methods for denois-
ing, segmentation, 

fusion, compression

Conceptual review 
-No software used

Reported 50% SNR 
improvement; 
Dice ~0.89 for 

segmentation; ad-
vantages in fusion 

and denoising

High com-
putational 
cost; lim-

ited clinical 
adoption

Multidimen-
sional wave-

lets and tensor 
decomposi-

tions improve 
medical image 

quality and 
segmentation

Enhanced SNR 
(+50%); segmen-
tation dice ~0.89

Hajiabadi et 
al. 2021 [58]

Comparison of 
wavelet transforms to 
enhance CNN-based 
brain tumor segmen-

tation

Not specified

Daubechies wave-
lets found optimal, 
balancing accuracy 
and computational 

load

Tumor-
specific; 
wavelet 
choice 

depends on 
application

Wavelet 
transforms 

improve CNN 
segmentation 

accuracy

Improved 
segmentation 

performance with 
optimal wavelet 

choice

Jang et al. 
2020 [66]

Test–re-test repro-
ducibility of 1023 

myocardial radiomic 
features on cardiac 

MRI (cine bSSFP, T1/
T2 mapping); ICC 
≥0.8; inter-/intra-
observer analysis.

Python 
(PyRadiomics)

32–73% of 
features reproduc-
ible; GLRLM most 

stable in cine; 
first-order & GLCM 

most stable in 
T1/T2; gray-level 
non-uniformity 

consistently repro-
ducible.

Sensitive to 
segmenta-
tion; repro-
ducibility 
varies by 

sequence.

Only a subset 
of cardiac 

MRI radiomic 
features are 

reproducible; 
highlights 

sequence-spe-
cific stability.

Intra-observer 
reproducibility: 

61–73%; inter-ob-
server: 32–47%; 
identifies stable 

features for myo-
cardial phenotyp-

ing.

Jiang et al. 
2022 [19]

Wavelet-transformed 
CT radiomics for 
COVID-19 lesion 

grading; compared 23 
wavelets; bior1.1 LLL 
optimal; ML pipeline 
with AUC evaluation.

Python 
(PyRadiomics, 

BorutaShap+RF)

Wavelet model 
AUC=0.910 vs 
0.880 original; 
decision curve 

showed net clinical 
benefit.

COVID-19–
specific; ret-
rospective 

multicenter 
dataset; 

limited gen-
eralizability.

Wavelet 
transformation 

enhances CT 
texture fea-

tures for lesion 
grading.

Improved diag-
nostic accuracy 
(AUC 0.910) and 
clinical utility for 
COVID-19 lesion 
severity assess-

ment.

Kafieh et al. 
2012 [67]

Circular symmetric 
Laplacian mixture 
model in wavelet 

diffusion for dental 
image denoising; 

evaluated with CNR.

MATLAB (re-
ported)

CNR improved 
dramatically (e.g. 
AP: 2.91→38.88; 

cephal-lateral: 
41.61→86.31); 

preserved cavities.

Dental-spe-
cific; model 

complex-
ity; limited 
datasets.

Wavelet dif-
fusion with 

Laplacian mix-
ture improves 
dental image 

denoising 
while preserv-
ing diagnostic 

details.

Significant CNR 
gains across 

modalities; cavi-
ties retained in 
filtered images.

Kumar et al. 
2020 [68]

Hybrid 
radiomics+stationary 
wavelet features for 

glioma grading (BraTS 
2018); Random Forest 

with 5-fold CV.

Python

Achieved state-of-
the-art classifica-

tion; features 
from three ROIs 

improved discrimi-
nation.

Limited to 
BraTS data-
set; binary 

HGG vs LGG 
classifica-

tion.

Hybrid station-
ary wave-

let–radiomics 
approach ac-
curately clas-
sifies glioma 

grades.

Accuracy 97.54%, 
AUC 97.48% for 
HGG/LGG clas-

sification.

Larue et al. 
2018 [69]

Pre-treatment CT 
radiomics to predict 
3-year OS in esopha-

geal cancer after 
chemoradiotherapy; 
RF models with fea-

ture elimination.

In-house devel-
oped radiomics 

toolbox

Radiomic features 
(esp. wavelet 

textures) predicted 
OS; AUC ~0.69 
training, 0.61 

validation.

Retro-
spective; 

esophageal-
specific; 
possible 

overfitting.

CT radiomics 
provides 

prognostic 
information 

for survival in 
esophageal 

cancer.

AUC ~0.70 (train-
ing), ~0.61 (vali-

dation) for 3-year 
OS prediction.

Larue et al. 
2017 [70]

Used 4DCT phases 
as surrogate for 

test–re-test to assess 
radiomics stability 

(1045 features); CCC 
>0.85; Cox regression 

for prognostic cor-
relation.

In-house devel-
oped software

56% unfiltered 
and 33% wavelet 
features stable in 
4DCT; 38% robust 
in esophageal can-
cer; 108 features 

prognostic.

Respira-
tory motion 
variability; 

thoracic 
cancers 

only.

4DCT can 
substitute 
test–retest 
for stability 
assessment; 
robustness 

independent 
of prognostic 

value.

~397/1045 
features robust 
in esophageal 
cancer; stable 

features identi-
fied across NSCLC 
and esophageal 

datasets.

Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intelligence):683-704.



694

2025. Volume 15. Special Issue: Artificial Intelligence

Authors Methodology Software 
(Language) Key Findings Limitations Summary Outcomes

Liu et al. 
2016 [39]

CT-based 3D ra-
diomics (219 features, 
59 independent) from 
lung adenocarcinoma; 

logistic regression 
for EGFR mutation 

prediction.

Definiens de-
veloper XD+Not 
specified for fea-
ture extraction 

11 features signifi-
cantly associated 
with EGFR muta-
tion; combined 

model AUC=0.709 
vs 0.667 clinical.

Retrospec-
tive; Asian 

cohort; 
surgically 
resected 
tumors 

only.

CT radiomics 
adds predic-

tive power for 
EGFR mutation 

status.

AUC improved 
to 0.709 with 

radiomics+clinical 
features.

Moshantat et 
al. 2015 [71]

Wavelet (Daubechies 
db1, db2, db4) fea-

ture descriptors from 
lung CT ROIs; SVM 

classifier.

MATLAB

Accuracy 82%; 
sensitivity 90.9%; 
specificity 73.9%; 
detected nodules 

2–30 mm.

No seg-
mentation 

stage; small 
datasets.

CADx system 
using wavelet 

descriptors 
and SVM 

classifies lung 
nodules ef-

fectively.

82% precision; 
90.9% sensitivity; 
73.9% specificity.

Mukhopad-
hyay et al. 
2019 [72]

DWT-based fusion 
of CT and MRI using 
multiple wavelets 

(haar, db, sym, coif, 
bior, rbio, dmey); 

evaluated with PSNR, 
SNR, entropy.

MATLAB

Biorthogonal/re-
verse biorthogonal 
wavelets yielded 
highest entropy 
and SNR; fused 

images improved 
clarity.

Limited to 
CT/MRI; no 
ML integra-

tion.

DWT fusion 
improves 

multimodal 
medical im-
age quality; 

performance 
depends 

on wavelet 
choice.

Best results with 
rbio3.1: Entropy 
5.76, PSNR 21.7 
dB, SNR 10.26.

Madero 
Orozco et al. 

2015 [57]

Wavelet (Daubechies 
db1, db2, db4) fea-

ture descriptors from 
lung CT ROIs; SVM 

classifier.

MATLAB

Accuracy 82%; 
sensitivity 90.9%; 
specificity 73.9%; 
detected nodules 

2–30 mm.

No seg-
mentation 

stage; small 
datasets.

CADx system 
using wavelet 

descriptors 
and SVM 

classifies lung 
nodules ef-

fectively.

82% precision; 
90.9% sensitivity; 
73.9% specificity.

Pradhan et 
al. 2006 [73]

Estimation of optimal 
decomposition levels 
in SIDWT for MS–PAN 

image fusion

Not specified

Optimal levels 
increase with 

resolution ratio; 
balance between 
spatial and spec-

tral fidelity

High com-
putational 

cost for 
excessive 

levels

Provides 
guidelines 

for selecting 
decomposi-
tion levels in 
multisensor 

fusion

Improved spec-
tral fidelity and 
spatial quality 

with appropriate 
level selection

Prinzi et al. 
2023 [45]

Radiomic features 
from multiple wavelet 

kernels; ML models 
(RF, SVM, XGB) for 
COVID19 prognosis 

on CXR

Not specified

Bior1.5, Coif1, 
Haar, Sym2 kernels 

performed best; 
RF most stable 

with balanced sen-
sitivity/specificity

Limited to 
COVID19 
and CXR 
modality

Demonstrates 
kernel choice 
significantly 
impacts ra-

diomic predic-
tive power

Enhanced prog-
nosis prediction; 

RF achieved 
robust balance

Procházka et 
al. 2011 [74]

3D DWT for denoising 
and reconstruction of 
biomedical volumes 
(MRI); thresholding 
and wavelet com-

parison

MATLAB (likely)

Effective denois-
ing; improved 

PSNR and MSE; 
better visualization 

of vertebrae

Compu-
tationally 
intensive; 

perfor-
mance 

depends on 
wavelet and 
noise type

Introduces 
3D DWT for 
volumetric 

biomedical im-
age enhance-

ment

Improved PSNR 
and visual quality; 
emphasized spi-
nal components

Qiu et al. 
2022 [75]

MWCS radiomics 
from plain CT for HCC 
vs HH classification; 
ML pipelines with 
feature selection

Python (likely)

MWCSCOM fea-
tures superior; lin-
ear SVM achieved 

AUC=0.8734

Restricted 
to plain 

CT; avoids 
contrastin-

duced 
toxicity

Novel histo-
pathologyin-
spired MWCS 
features for CT 

radiomics

High diagnos-
tic accuracy; 
interpretable 

features linked to 
pathology

Rabbani et al. 
2009 [26]

DCWT with bivariate 
Laplacian mixture 
priors; Gaussian/

Rayleigh noise 
models; MAP/MMSE 
estimators; local EM 

parameter estimation

Not specified

BiLapGausMAP 
best for CT; 

BiLapGausMMSE 
for highSNR CT; 

BiLapRayMAP for 
lowSNR MR

Assump-
tions on 
distribu-
tions; EM 
compu-

tationally 
heavy

Adaptive 
denoising 

using bivariate 
mixture priors 

in wavelet 
domain

Superior SNR 
enhancement 

while preserving 
details
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(Language) Key Findings Limitations Summary Outcomes

Rabbani et al.  
2008 [25]

Complex wavelet 
transform; Gaussian/
Laplacian mixture pri-
ors; MAP/MMSE esti-
mators for ultrasound 

speckle reduction; 
local EM

Not specified

Outperformed 
stateoftheart 

despeckling; pre-
served anatomical 

boundaries

Model as-
sumptions; 

focused 
on speckle 
noise only

Adaptive 
despeckling 

using mixture 
priors in com-
plex wavelet 

domain

Significant speck-
le suppression 
with preserved 

details

Sarhan 2020 
[37]

DWT for feature 
extraction+CNN for 

brain tumor classifica-
tion in MRI

Not specified
Achieved 99.3% 

accuracy; outper-
formed SVM

Limited to 
brain MRI; 

no seg-
mentation 
required

Combines 
wavelet 

features with 
CNN for CAD

99.3% classifica-
tion accuracy 
across three 
tumor types

Shirazinodeh 
et al. 2015 [6]

F1W2 algorithm: Frac-
tal segmentation+db2 

wavelet 
decomposition+RBF 
neural network for 

mammogram analysis

Not specified

90.9% mass 
detection; 88.99% 
microcalcification 

detection; 92% 
benign/malignant 

classification

Datasetspe-
cific; com-

putationally 
demanding

Hybrid 
fractalwavelet 
approach for 
breast cancer 

CAD

High detection 
and classification 

accuracy

Soufi et al. 
2018 [76]

Wavelet decomposi-
tionbased radiomic 
features from CT of 

lung cancer patients; 
Coxnet and MCPHR 
models for survival 

prediction

MATLAB

Symlet 5 and 
Biorthogonal 

2.6 optimal; Cin-
dex≈0.62–0.68

Limited 
to NSCLC 
cohort; 

dependent 
on wavelet 

choice

Introduces RI 
for optimal 

wavelet selec-
tion

Improved 
prognostic 

performance with 
selected wavelets

Suryana-
rayana et al. 

2021 [77]

VDRnet trained on 
SWT subbands; 

Gaussian edgepreser-
vation for MR image 

superresolution

MATLAB

Outperformed 
competing meth-

ods in PSNR, SSIM, 
and subjective 

quality

Compu-
tationally 
intensive; 
modality-
specific to 

MRI

Combines 
deep residual 
learning with 

SWT and 
Gaussian 
filtering

Higher PSNR and 
improved visual 
fidelity in MR su-

perresolution

Tang et al. 
2023 [35]

Wavelet radiomics 
features from mul-
tiphase CT for HCC 

vs. non-HCC; logistic 
sparsity-based feature 
selection with Bayes-

ian optimization; 
compared with CNNs.

Python, 3D Slicer

Combining wave-
let + original CT 
features signifi-
cantly improved 

classification; logis-
tic sparsity model 

outperformed 
filter/wrapper 

methods; perfor-
mance compara-

ble to CNNs under 
limited data.

Lim-
ited training 

samples; 
specific to 
hepatic le-

sions; single 
dataset.

Multiphase 
CT wavelet 

radiomics with 
sparsity-based 

selection 
enhances HCC 
classification 
compared to 
conventional 

methods.

AUC ~0.85–0.90, 
comparable to 

CNNs under data 
scarcity.

Wang et al. 
2018 [3]

Voxel-wise morpho-
logical connectivity 
using wavelet trans-
form of VBM; test–

retest reliability; hub 
detection via degree 

centrality.

MATLAB 

High test–re-
test reliability; 

reproducible hub 
structures (precu-
neus, cingulate, 
hippocampus); 

group-level stable, 
individual-level 

sensitive to scale/
threshold.

Anatomi-
cal MRI 

only; small 
healthy 
cohort 
(n=21).

Wavelet-based 
voxel-wise 

morphological 
networks pro-
vide reliable 
connectome 

mapping 
and capture 

individual vari-
ability.

High ICC (>0.7); 
consistent hubs 
across sessions; 

reflects individual 
differences.

Whybra et al. 
2024 [4]

IBSI standardization of 
8 convolutional filters 

(mean, LoG, Laws, 
Gabor, separable/

non-separable wave-
lets, Riesz); digital 

phantoms, chest CT, 
multimodal valida-

tion.

Multi-software 
(Python, ITK, 
PyRadiomics, 

CERR, LIFEx, etc.)

33 reference 
filtered images es-
tablished; 323/396 
reference feature 
values; 458/486 

features reproduc-
ible (ICC lower 
bound >0.75) 

across 9 teams and 
3 modalities.

No consen-
sus for Riesz 
transforms; 
validation 
limited to 

51 sarcoma 
patients.

IBSI standard-
ized convolu-
tional filters 

for reproduc-
ible radiomics; 
compliance-

checking web 
tool available.

~94% reproduc-
ibility across 
CT, PET, MRI; 

improves clinical 
reliability of ra-

diomics pipelines.
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Trade-offs between computational complexity 
and feature quality

Deep wavelet decompositions and complex wavelet 
designs increase computational demands, especially 
for large images or 3D volumes. While higher levels 
and sophisticated wavelets (e.g. Daubechies with more 
vanishing moments) may improve granularity, they risk 
diminishing returns if biological relevance does not scale 
accordingly. Simplified configurations reduce resource 
usage but may compromise feature quality [45, 87]. 
Future implementations should prioritize efficient con-
figurations—e.g. limiting decomposition to 3–4 levels, 
downsampling inputs, and leveraging parallel process-
ing or GPU acceleration (e.g. PyWavelets, MATLAB 
toolbox)—to balance quality and feasibility [89].

Standardization issues across institutions and im-
aging protocols

Wavelet-based radiomics suffers from poor standard-
ization across imaging setups. Variations in scanner 
types, voxel sizes, and contrast settings alter signal char-
acteristics, leading to inconsistent wavelet decomposi-
tions. Without standardized preprocessing or wavelet 
parameters, features from identical tissues may differ 
significantly between institutions, hindering multicenter 
studies and clinical translation [88, 90]. Future efforts 
should adopt established preprocessing standards (e.g. 
IBSI), report wavelet parameters explicitly, and promote 
inter-institutional consensus protocols. Incorporating 
wavelet settings into broader radiomics standardization 
frameworks is also recommended  [88, 91].

Limitations of wavelet transforms

Wavelet transforms are prone to boundary effects due 
to image padding, which distorts subband values near 

Authors Methodology Software 
(Language) Key Findings Limitations Summary Outcomes

Wong et al. 
2025 [78]

Rotation effects 
on wavelet-based 

radiomics in NSCLC 
CT; random rotations 
(5–80°); Spearman’s 

test for feature 
stability and model 

accuracy.

Python 
(PyRadiomics, 

SciPy)

23.7% of WD 
features signifi-

cantly correlated 
with rotation vs. 
0.5% of non-WD; 

WD-based models 
showed accuracy 
decline with rota-
tion (CC=–0.44, 

P<0.001).

Retrospec-
tive; NSCLC 

only; 
simulated 
rotations.

Lesion orienta-
tion strongly 

impacts 
reproducibil-
ity of wavelet 

radiomics 
features and 

models.

WD features 
unstable (23.7% 
affected); model 

accuracy dropped 
with increasing 

rotation.

Yoo et. al. 
2007 [43] 

3D DWT for land-
cover classification 
of optical and SAR 
images; compared 

with pixel-based and 
2D DWT.

MATLAB (haar 
wavelet)

Improved clas-
sification accuracy, 
especially in SAR 
(97.7% vs 60.2% 

original); reduced 
speckle noise; 
effective for 

high-resolution 
imagery.

Limited 
to remote 
sensing; 
compu-

tationally 
intensive; 

single-
sensor 

datasets.

3D DWT lever-
ages spatial+ 
spectral info 
for superior 
classification 
of multispec-
tral and SAR 

images.

Accuracy gains: 
Landsat (68.6% 

vs 68.2%), Ikonos 
(86.1% vs 77.0%), 

SAR (97.7% vs 
60.2%).

Zhou et al. 
2020 [79]

Wavelet-transformed 
radiomic features 
from CE-MRI for 

predicting pCR to NAC 
in locally advanced 

breast cancer; six RF 
models combining 
volumetric, periph-
eral, and wavelet 

textures.

3DQI platform 
(Python/MATLAB 

backend)

Wavelet textures 
alone achieved 

highest AUC 
(0.888); adding 
volumetric/pe-

ripheral features 
did not improve 

performance.

Retrospec-
tive; small 

cohort 
(n=55); 

single insti-
tution.

Wavelet-
transformed 

MRI radiomics 
predicts NAC 

response 
more ac-

curately than 
non-wavelet 

features.

AUC up to 
0.888 for pCR 

prediction using 
wavelet-only 

models.

Abbreviation: CSA: Crow search algorithm; SSO: Social spider optimization; DNN: Deep neural network; DWT: Discrete 
wavelet transform; RA: Ranking index; 3D DWT: 3D discrete wavelet transform; VDRnet:Very deep residual network; MWCS: 
Maximum waveletcoefficient statistics; CADx: Computer-aided diagnosis; CNR: Contrast-to-noise ratio; CXR: Chest X-ray; 
DCWT: Dual-tree complex wavelet transform; F1W2: Fractal and wavelet combined algorithm; HCC: Hepatocellular carcino-
ma; Rbio: Reverse biorthogonal; SIDWT: Shift-invariant discrete wavelet transform; SSIM: Structural similarity index measure; 
XGB: XGBoost.
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edges—especially problematic for small ROIs, like ear-
ly tumors. Additionally, feature interpretability remains 
limited; linking subband metrics (e.g. HH3 entropy) to 
biological phenomena is often unclear. Over-decompo-
sition in low-signal-to-noise ratio (SNR) modalities (e.g. 
PET) may further compromise reliability [88, 90]. Fu-
ture works should apply boundary-handling techniques 
(e.g. symmetric padding, ROI cropping), correlate wave-
let features with histological or clinical outcomes to en-
hance interpretability, and utilize noise-robust wavelets 
(e.g. Coiflets) for noisy data [85, 92].

Robustness testing and validation

Without rigorous testing, wavelet-derived features may 
lack robustness across scanners, protocols, and pertur-
bations [93]. All features should undergo robustness 
evaluation using metrics, like intraclass correlation co-
efficient. Unstable features should be excluded early in 
the pipeline to ensure statistical reliability and clinical 
relevance [73, 87].

Discussion

This systematic review synthesized evidence from 
62 studies on the application of wavelet transforms in 
radiomic feature extraction from medical images, par-
ticularly CT, MRI, and PET modalities. Our analysis 
revealed that wavelet-based approaches consistently en-
hance the robustness and reproducibility of radiomic fea-
tures, and partly overcome key challenges in radiomics, 
such as noise sensitivity, imaging artifacts, and protocol 
variability. By decomposing images into multiscale fre-
quency components—low-frequency approximations 
for structural integrity and high-frequency details for 
textural nuances—wavelets enable the isolation of bio-

logically relevant patterns that traditional preprocessing 
methods, like Gaussian smoothing or Fourier transforms, 
often overlook. This multiresolution analysis not only 
minimizes irrelevant variance but also preserves spatial 
localization, making it particularly valuable for oncol-
ogy applications, including tumor grading, survival pre-
diction, and treatment response assessment.

Key findings and trends in wavelet applications

The reviewed studies demonstrate wavelet transforms’ 
versatility across diverse clinical scenarios. DWT, in-
cluding 2D and 3D variants, were the most prevalent 
(appearing in ~70% of studies), excelling in tasks, like 
denoising (e.g. Rician noise reduction with up to +30 
dB peak signal-to-noise ratio [PSNR] gains [62]) and 
feature enhancement for ML classification (e.g. 98% 
accuracy in glioma grading using wavelet-augmented 
random forests [RF] [63]). Advanced variants, such 
as stationary wavelet transforms (SWT) and DTCWT, 
further improved shift-invariance and reduced aliasing 
artifacts, yielding superior performance in fusion tasks 
(e.g. CT-MRI integration with entropy gains up to 5.76 
[71]) and prognostic modeling (e.g. C-index 0.62–0.68 
for NSCLC survival [76]).

Figure 5 shows publication trends that indicate a 
steady rise in wavelet-radiomics research, from 1–2 ar-
ticles annually pre-2015 to a peak of 5 in 2020, reflect-
ing growing interest amid the radiomics boom and the 
COVID-19-driven demand for robust imaging analytics 
(e.g. lesion severity grading with AUC 0.910 [19]). Post-
2020, the trajectory stabilized at 2–4 publications per 
year, possibly due to saturation in core applications and a 
shift toward integration with DL. This temporal distribu-
tion underscores wavelets’ evolution from foundational 

Table 4. Practical guideline based on image characteristics and feature types [7, 17, 38, 81-85]

Image Characteristic Type of Fea-
ture

Recommended 
Wavelet Rationale

High contrast, sharp edges (CT, 
T1 MRI)

Texture 
(edges) db2*, db4 Captures edges effectively, with db2 for sharp disconti-

nuities and db4 for balance.

Smooth transitions (T2 MRI) Texture 
(smooth) db4, db6, coif1† Handles smooth intensity variations, with higher mo-

ments for finer detail capture.

Low resolution, noise-prone 
(PET) Any db6, db8, coif2 Suppresses noise, with more vanishing moments for bet-

ter noise handling.

Fine textures Texture db6, db8 More vanishing moments capture high-frequency details 
for heterogeneous regions.

Coarse textures Texture db2, db4 Fewer vanishing moments focus on low-frequency pat-
terns for larger, smoother areas.

Noisy images Any db6, db8, coif2 Higher-order wavelets reduce noise impact, improving 
feature reliability.

*dbN : Daubechies wavelets of order N; †coifN : Coiflet wavelets of order N.

Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intelligence):683-704.



698

2025. Volume 15. Special Issue: Artificial Intelligence

denoising tools (early 2000s) to integral components of 
hybrid ML pipelines, with over 80% of recent studies 
(2020–2025) combining them with classifiers like RF or 
support vector machines (SVM).

Software adoption patterns highlight MATLAB’s dom-
inance (13 studies), likely due to its wavelet toolbox for 
rapid prototyping and IBSI-compliant implementations 
(e.g. 3.5× speedup in Haralick textures [60]). Python, 
with libraries, like PyRadiomics and scikit-learn (10 
studies), emerged as a close second, favored for scalabil-
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Figure 6. Pie chart summarizing frequencies of software tools mentioned, illustrating MATLAB and 

Python's prevalence alongside gaps in specification. 
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ity and open-source ML integration (e.g. 99.2% accura-
cy in PDAC detection [64]). The equal share of “others” 
(e.g. 3D Slicer, R; 10 studies) and unspecified tools (8 
studies) points to a fragmented ecosystem, emphasizing 
the need for standardized pipelines to ensure reproduc-
ibility. Figure 6 shows the pie chart summary based on 
these 36 articles, illustrating this distribution and under-
scoring Python’s emerging preference for open-source 
workflows in radiomics, balanced against MATLAB’s 
established clinical validation strengths.

Quantitative outcomes across studies were compelling: 
wavelet-enhanced models achieved median AUC-ROC 
values of 0.85–0.98 for classification tasks (e.g. GBM 
vs. MET differentiation [63]) and 0.70–0.89 for prog-
nostication (e.g. pCR prediction in breast cancer [79]). 
Reproducibility metrics, such as ICC >0.75, were report-
ed in 40% of studies, with wavelet filters outperforming 
non-wavelet baselines by 20–50% in stability (e.g. 73% 
reproducible features in cardiac MRI [66]). These gains 
were modality-agnostic, though CT dominated (55% of 
studies), followed by MRI (30%) and PET (15%), align-
ing with CT’s prevalence in oncology workflows.

Strengths and comparative advantages

Wavelets surpass classical methods, like short-time 
Fourier transforms or empirical mode decomposition 
in most scenarios by providing scale-dependent, local-
ized decompositions that capture heterogeneous tumor 
microenvironments without excessive smoothing. For 
instance, while Fourier methods excel in global fre-
quency analysis, they lack spatial resolution, leading to 
feature dilution in noisy datasets—a limitation mitigated 
by wavelets’ subband thresholding (e.g. +50% SNR in 
multidimensional denoising [65]). Integration with ML/
DL amplified these benefits: hybrid models (e.g. wave-
let-CNNs) achieved 96–99% accuracies in segmentation 
and classification [37, 38], outperforming standalone DL 
by 5–10% under data scarcity.

Compared to prior reviews (Table 1), this work unique-
ly bridges theoretical wavelet foundations (e.g. mother 
wavelet selection, like Daubechies or Biorthogonal) 
with radiomics-specific implementations, filling a gap 
in modality-focused syntheses. Unlike signal-centric 
reviews (e.g. ECG compression [10]), we emphasized 
imaging applications, where wavelets’ edge-preserving 
properties (e.g. cavity retention in dental denoising [67]) 
directly translate to clinical utility.

Limitations and challenges

Despite these advances, several limitations persist. 
Computational intensity remains a barrier: 3D/4D de-
compositions demand high resources, limiting scalabili-
ty for large cohorts (e.g. noted in 25% of studies [65, 73]. 
Parameter tuning—decomposition levels, wavelet fami-
lies, and thresholding—varies widely, with suboptimal 
choices reducing reproducibility (e.g. rotation sensitivity 
in 23.7% of wavelet features [78]). Small, retrospective 
cohorts (median n=55–121) and single-institution data 
(80% of studies) raise generalizability concerns, while 
manual segmentations introduce observer bias [63, 64].

Heterogeneity in noise models (Gaussian vs Rician) 
and lack of IBSI standardization across tools further 
complicates comparisons, as evidenced by discrepancies 
in feature definitions [60]. Alternatives, like empirical 
mode decomposition may outperform in non-stationary 
signals (e.g. dynamic PET), but wavelets’ structured 
framework makes them more amenable to automated 
pipelines.

Implications for clinical practice and future 
directions

Wavelet-radiomics holds transformative potential for 
precision medicine, enabling non-invasive, quantitative 
phenotyping that informs personalized therapies (e.g. 
EGFR mutation prediction with AUC 0.709 [94]). By 
enhancing feature stability, it could standardize multi-
institutional trials, reducing protocol-induced variances 
and accelerating biomarker discovery.

Future research should prioritize: 1) prospective, mul-
ticenter validations with diverse cohorts; 2) automated 
hyperparameter optimization via genetic algorithms or 
Bayesian methods to mitigate selection biases; 3) deeper 
DL synergies, such as wavelet-embedded CNNs for end-
to-end pipelines; and 4) IBSI-compliant benchmarks for 
filter standardization e.g. expanding framework 4). De-
veloping lightweight, cloud-based tools could democra-
tize access, bridging the MATLAB-Python divide.

In conclusion, wavelet transforms represent a corner-
stone for robust radiomics, offering a mathematically 
grounded yet practically viable pathway to overcome 
imaging heterogeneity. This review’s framework—en-
compassing workflows, challenges, and optimizations—
equips researchers and clinicians to harness these tools 
for enhanced diagnostic and prognostic accuracy, ulti-
mately advancing patient-centered care.
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Conclusion

This systematic review confirms that wavelet trans-
forms are a transformative approach to extracting ra-
diomic features, leveraging their mathematical founda-
tion in multiresolution analysis to decompose medical 
images into multiscale representations with exceptional 
accuracy. The most important findings show that wave-
let-based methods, especially the DWT and advanced 
techniques, such as the DTCWT, enhance the detection 
of morphological and histological features, improve the 
reproducibility of features in CT, MRI, and PET modali-
ties, and reduce the sensitivity to noise, thereby enhanc-
ing the quality and biological relevance of radiomic 
analyses. These capabilities have been demonstrated by 
their successful application in predicting complete path-
ological response to neoadjuvant chemotherapy in breast 
cancer and in stratifying hepatocellular carcinoma using 
MRI. However, challenges, such as parameter selection, 
computational complexity, and lack of standardized pro-
tocols remain significant obstacles that require robust 
implementation strategies and adherence to frameworks, 
such as the IBSI. Looking ahead, integrating wavelet-
derived features with ML and DL holds promise for im-
proving diagnostic accuracy and prognostic modeling, 
while multimodal approaches that combine radiomics 
with genomic data could provide deeper insights into dis-
ease mechanisms. Emerging applications, such as real-
time intraoperative guidance and longitudinal treatment 
monitoring, highlight the potential of wavelet transforms 
for advancing precision medicine. To fully realize this 
potential, future efforts should prioritize interdisciplin-
ary collaboration, validation across diverse datasets, and 
expansion of standardization initiatives. By addressing 
these gaps, wavelet-based radiomics can become a more 
accurate and impactful tool, bridging the gap between 
theoretical advances and clinical application to improve 
patient outcomes. 

Future research should prioritize the development of 
hybrid approaches that integrate wavelet transforms with 
ML or DL to address limitations in interpretability and 
computational demands, the advancement of multimod-
al integration by combining wavelet-based radiomics 
with functional imaging techniques, such as PET and 
fMRI or with genomic and proteomic data to offer a 
comprehensive understanding of disease processes, 
and the promotion of standardization and collaboration 
through interdisciplinary efforts among researchers, cli-
nicians, and industry to establish standardized protocols 
and open-access databases; as a result, wavelet-based 
radiomics emerges as a promising frontier in medical 
imaging, enabling advanced quantitative analysis of im-

ages, and addressing current challenges while enhancing 
interdisciplinary collaboration will significantly contrib-
ute to improving patient care and outcomes.
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