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ABSTRACT

Background: Radiomics relies on quantitative information extracted from medical images
to enhance clinical decision-making; however, it is subject to noise, artifacts, and varying
imaging protocols, all of which affect its reliability. Wavelet transforms provide a solution by
allowing images to be decomposed into multiscale frequency components while retaining spatial
information. Compared to classical preprocessing methods, this work highlights the necessity of
an overall precondition framework for using wavelet transforms in radiomics.

Methods: In this study, we conducted a review by systematically searching databases, such
as PubMed, IEEE Xplore, Web of Science, and Scopus for peer-reviewed articles published
between January 2015 and February 2025. We focused on keywords, like “wavelet transform,”
“radiomics,” “feature extraction,” and specific imaging modalities, such as “CT,” “MRI,” and
“PET.” We selected studies based on their relevance to wavelet-based radiomics and evaluated
their quality using a modified QUADAS-2 tool.

Results: Our findings indicated that wavelet transforms can significantly enhance the
reproducibility of radiomic features, minimize sensitivity to noise, and improve the detection of
textural and morphological patterns in CT, MRI, and PET imaging. However, in certain situations,
alternative methods, like empirical mode decomposition or short-time Fourier transform may
yield better results. Wavelet transforms often surpass traditional Fourier transform techniques by
offering localized and scale-dependent decomposition, even though they come with increased
computational demands.

Conclusion: This review offers a thorough framework for wavelet-based radiomics, merging
mathematical concepts with practical implementation strategies. It contributes to the field by
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Introduction

edical imaging techniques, such as CT,
MRI, and PET play a crucial role in
facilitating accurate diagnosis, treat-
ment planning, and monitoring [1].
Radiomics enhances these capabilities
by extracting quantitative features from images, which
provide valuable insights into tissue characteristics and
disease progression, ultimately supporting personalized
medicine. However, the field of radiomics faces several
challenges, including sensitivity to noise and issues with
reproducibility across different imaging protocols [2].

Wavelet transforms offer a solution to these challenges
by breaking down images into multiscale frequency
components. This approach helps preserve spatial details
and enhances the robustness of features compared to
traditional methods, like Fourier transform. Despite their
advantages, wavelet methods can introduce computational
complexity and difficulties in parameter selection, which
can limit their widespread application [3].

Wavelet-based techniques, grounded in mathematical
principles, enable detailed analysis for extracting mul-
tiresolution radiomic features. They are particularly ef-
fective in detecting subtle patterns and ensuring the re-
producibility of features. Ongoing advancements make
these methods even more efficient [4]. When wavelet
transforms decompose an image into approximation
(low-frequency) and detail (high-frequency) compo-
nents, they allow for the isolation of meaningful struc-
tural data while reducing noise and irrelevant variance
[5, 6]. This dual capability makes wavelets an optimal
tool for radiomics, especially since biologically relevant
features need to be platform-agnostic, considering the
challenges posed by data heterogeneity across institu-
tions and imperfections in imaging modalities [7].

This review describes wavelet transforms role in ex-
tracting robust radiomic features from CT, MRI, and
PET images. We outline practical workflows using
PyWavelets and MATLAB, address challenges, like
parameter selection, computational complexity, and
standardization, and propose adopting IBSI guidelines
for standardized analysis. This review aimed to guide
researchers and clinicians to enhance precision medicine
through improved medical imaging analysis.

Methods

This review systematically evaluated the application
of wavelet transforms for radiomic feature extraction in
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medical imaging, focusing on their mathematical foun-
dations and practical implementation. The review ad-
hered to a structured methodology to ensure comprehen-
sive coverage of relevant literature, as outlined below.

Comparison with existing reviews

This review stands out from previous literature by
providing a specialized and in-depth review of wavelet
transforms, with a particular focus on their application
in medical images for radiomic feature extraction, a role
that has not been extensively covered elsewhere. Grob-
belaar et al. concentrate on utilizing wavelet transforms
for denoising EEG signals [8], while Guo et al. trace the
evolutionary history of wavelet theory and examine its di-
verse properties in detail [9]. Manikandan and Dandapat
investigate wavelet-based techniques for ECG compres-
sion, evaluating their effectiveness [10], and Serhal et al.
offer a comprehensive review of Al models applied to
analyze atrial fibrillation using wavelet transform [11]. In
contrast, Shuvo et al. address a broader spectrum, encom-
passing the analysis of both medical signals and images
across various healthcare applications [12]. The innova-
tion of this approach lies in the detailed examination of
various wavelet transform transforms—discrete (DWT),
continuous (CWT), tunable g-factor wavelet transform
(TQWT), and advanced transforms—that are specifical-
ly designed for radiomics applications and achieve high
performance metrics. Furthermore, the integration of ma-
chine learning (ML) and deep learning (DL) with wavelet
transform, provides significant insights, making it a valu-
able resource for advancing radiomics research and clini-
cal practice. As shown in Table 1, this review uniquely
focused on radiomics in medical images, filling a gap in
the existing literature.

Search strategy

A systematic literature search was conducted using
PubMed, IEEE Xplore, Web of Science, and Scopus data-
bases to identify peer-reviewed articles published between
January 2015 and February 2025. The search utilized a
combination of keywords, including “wavelet transform”,
“radiomics”, “feature extraction”, “medical imaging”,
“multiresolution analysis”, “2D DWT”, “3D DWT”, “tex-
ture analysis”, and “image preprocessing”. These terms
were refined with modality-specific keywords (e.g. “CT”,
“MRI”, “PET”) to target studies relevant to medical imag-
ing applications. Boolean operators (AND, OR) were em-
ployed to combine terms, and filters were applied to limit
results to English-language articles and peer-reviewed
journals. Additional sources were identified through man-
ual screening of reference lists from key articles.
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Table 1. Comparative summary of existing reviews on wavelet applications

Type of

. I . Types of Wavelet No. of
Authors (y) Main Objective Medical L - Other Aspects
Data Transforms Citations
Survey denoising techniques Focus on noise removal in
Grobbelaar et for EEG signals using wavelet  EEG signals Gen_e_ral wavelet 101 neurophysiology; limited to
al. (2022) [8] denoising methods . Sl :
transform EEG; no radiomics emphasis
Py 1 Broad theoretical overview;
Guo et al. and bro erti(fs of waveletry General Various wavelet 210 not medical-specific; chal-
(2022) [9] prop signals constructions lenges and opportunities
theor
¥ discussed
Manikandan Prospective review of Emphasis on.compreSS{o.n.
. Wavelet-based com- performance; ECG-specific;
and Dandapat  wavelet-based ECG compres-  ECG signals . . 153 .
(2014) [10] sion methods pression techniques performance metrics evalu-
ated
Overview of wavelet and Al . Integration with Al; focused
S(%gall)e[tlill. for atrial fibrillation predic- ECG signals Wg:ﬁgﬁmgtﬁ,l:or 54 on atrial fibrillation; predic-
tion/detection on ECG tion and classification
Medical Broad healthcare applica-
Shuvo et al. Systematic review of wavelet signals and Wavelet transforma- 0 (new) tions; includes signals and
(2025) [12] and Al in healthcare g tion with Al images; systemic review
images

approach

Figure 1 outlines the stages of identification, screening,
eligibility, and inclusion, with reasons for exclusions at
each stage.

Selection criteria

Studies were included if they: 1) focused on the ap-
plication of wavelet transforms in radiomic feature ex-
traction for medical imaging, 2) provided mathematical
or practical insights into wavelet transform implementa-
tions (e.g. 2D or 3D discrete wavelet transform), 3) ad-
dressed textural or morphological feature extraction in
modalities, such as CT, MRI, or PET, and 4) were pub-
lished within the specified timeframe. Exclusion criteria
encompassed: 1) studies lacking a clear focus on wave-
let-based radiomics, 2) non-peer-reviewed sources (e.g.

TR H
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conference abstracts, editorials), 3) studies not involving
medical imaging, and 4) articles not available in English.
The selection process is summarized in a flow diagram
(Figure 1), detailing the number of studies screened, in-
cluded, and excluded at each stage. The inclusion and
exclusion criteria based on the PICOS framework (popu-
lation, intervention, comparison, outcome, study design)
are given in Table 2. This PICOS-based table comple-
ments the PRISMA flow diagram (Figure 1), ensuring a
structured approach to study selection.

Data extraction

To ensure consistency, we extracted data from the in-
cluded studies using a standardized template. The in-
formation gathered included: 1) the type of study (such

Table 2. Inclusion and exclusion criteria based on the PICOS framework

PICOS Element Inclusion Criteria

Exclusion Criteria

Population

Intervention

Studies on medical imaging data (e.g. CT, MRI, PET) for
radiomics in human diseases

Application of wavelet transforms (e.g. DWT, CWT,
2D/3D) for feature extraction

Comparisons with classical methods (e.g. Fourier

Comparison Transform) or no comparison required if wavelet-
focused
Outcomes related to feature reproducibility, noise re-
Outcome duction, texture/morphology detection, or diagnostic
performance
. Peer-reviewed articles, systematic reviews, method-
Study design

ological studies (2015-2025)

Studies not involving medical imaging or radiomics;
non-human or non-clinical data

Studies without wavelet transforms or not focused
on radiomic feature extraction

Studies without relevance to wavelet-based ra-
diomics comparisons

Outcomes not related to radiomics features or
medical imaging analysis

Non-peer-reviewed (e.g. abstracts, editorials), non-
English, pre-2015 or post-2025

Drswwy
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Records identified through

Identification database searching
(PubMed, IEEE Xplore, Scopus)
(n=911)
A
- N
Records after duplicates removed
(n=824)
\ J
- A ~ Records excluded based on
] Records screened title/abstract (e.g., irrelevant topic,
‘ Screening ’ (n=824) non-medical imaging)
N g (n=485)
A
s Full-text articles assessed for Full-text an.1c1es exclu.ded (e.g.,
Eligibility elicibilit non-peer-reviewed, not in English,
(ni33 9)y no wavelet focus)
(n=277)
A

‘ Included ’

(n=62)

Studies included in the study

LLas

Figure 1. Flow diagram illustrating the study selection process for the systematic review on wavelet filters in radiomic feature extraction

as methodological or applied), 2) the imaging modality
used (CT, MRI, or PET), 3) the type of wavelet filter ap-
plied (like Haar, Daubechies, or Symlets), 4) the specific
radiomic features extracted (for example, intensity-based
features, gray-level co-occurrence matrix [GLCM], or
shape-based features), 5) the computational tools utilized
(such as PyWavelets or MATLAB), and 6) the reported
outcomes (including feature reproducibility and diag-
nostic performance). For studies that involved practical
implementations, we also recorded details about prepro-
cessing steps, decomposition levels, and feature extrac-
tion workflows. Two reviewers independently extracted
the data, and any discrepancies were resolved through
discussion to ensure accuracy.

Quality assessment

We assessed the quality of the included studies us-
ing a modified version of the quality assessment of di-
agnostic accuracy studies (QUADAS-2) tool, adapted
for radiomics research. The evaluation focused on: 1)
the clarity of the methodology (for instance, how well
the wavelet transform implementation was described),
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2) the robustness of the results (such as reproducibility
across different imaging protocols), 3) the relevance to
radiomics applications, and 4) adherence to standard-
ized reporting practices, like the image biomarker stan-
dardization initiative (IBSI) guidelines. Based on these
criteria, studies were categorized as high, moderate, or
low quality, with only high- and moderate-quality stud-
ies included in the final synthesis to ensure reliability.

Risk of bias assessment

To systematically evaluate the potential for bias in the
included studies, we conducted a risk of bias assessment
using a tailored framework adapted from the QUA-
DAS-2 tool and radiomics-specific guidelines. This as-
sessment focused on four key domains:

Selection bias: We examined whether the study popula-
tions were representative of the target clinical scenarios
and whether inclusion/exclusion criteria were clearly de-
fined. Studies with narrowly defined cohorts or lacking
modality-specific justification were flagged as high risk.
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Performance bias: We evaluated the transparency and
reproducibility of wavelet transform implementation,
including the choice of wavelet type, decomposition lev-
els, and preprocessing steps. Studies that failed to report
these parameters or used non-standardized workflows
were considered as higher risk.

Detection Bias: We assessed whether the radiomic
features extracted were validated against clinical or
biological outcomes. Studies lacking validation or rely-
ing solely on internal metrics (e.g. area under the curve
[AUC] without external testing) were marked as moder-
ate to high risk.

Reporting bias: We reviewed adherence to reporting
standards, such as the IBSI. Studies that omitted key
methodological details or failed to disclose software
tools and parameter settings were considered at risk of
incomplete reporting.

Each study was independently reviewed by two au-
thors, and disagreements were resolved through con-
sensus. The overall risk of bias was categorized as low,
moderate, or high based on the cumulative assessment
across domains.

Data analysis

We comprehensively provided an overview of how
wavelet filters are applied in radiomics. The analysis fo-
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cused on: 1) practical workflows for feature extraction
across different imaging modalities, and 2) challenges,
such as parameter selection and standardization. We
grouped studies by modality (CT, MRI, and PET) and
wavelet type to identify patterns in feature extraction and
implementation strategies. Key findings were summa-
rized in tables to facilitate comparison. We highlighted
qualitative trends in feature reproducibility, noise reduc-
tion, and clinical applicability. This narrative synthesis
integrates theoretical insights with practical guidance,
bridging mathematical rigor with real-world applications
in radiomics.

Results

The mathematical foundations of wavelet trans-
forms

The mathematical foundations of wavelet transforms,
which include CWT, DWT, and multiresolution analysis
allows us to concentrate on practical applications [13-
15]. These foundational concepts highlight the unique
advantages of wavelet transforms in the field of ra-
diomics, providing superior time-frequency analysis and
localized, scale-dependent decomposition compared to
traditional methods, like the Fourier transform. This ca-
pability facilitates the robust extraction of biologically
relevant features, thereby enhancing the practical imple-
mentation of wavelet-based radiomic workflows [16].

Articles indexed in Pubmed

Number of published articles
—_ [\ w B W [*)) ~J
(el (el (el (el (el o (e

(e

2015 2016 2017 2018 2019 2020 2021

2022 2023 2024 2025
Year

LAl

Figure 2. Annual number of published papers in wavelet-based radiomics from 2015 to 2025, based on PubMed search results

for “wavelets and radiomics
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Wavelet transforms in radiomic feature extraction

Wavelet transforms have become a cornerstone of ra-
diomics, enabling multiscale decomposition of medical
images to extract biologically meaningful features. To
examine this important issue in recent years, a PubMed
search using the keywords “wavelets and radiomics”
from 2015 to 2025 can show the status and trend of pub-
lishing articles in this field (Figure 2). This section high-
lights the role of wavelets in texture enhancement, noise
reduction, feature diversity, advanced transform design,
and clinical applications.

Wavelet transforms enhance the detection of subtle tex-
tural and morphological patterns often missed by con-
ventional methods [17]. Texture, defined as the spatial
arrangement of pixel intensities, is essential for distin-
guishing healthy from pathological tissue [18]. Through
decomposition into approximation and detail subbands
[19], wavelets capture both broad structural patterns
(e.g. tumor shape) and fine-grained details (e.g. edges,
granularity) [20, 21]. This multiscale capability allows
radiomics to integrate microscopic and macroscopic fea-
tures [22, 23].

Wavelet decomposition improves feature robustness
by isolating high-frequency noise into detail subbands,
allowing selective filtering while preserving signal in-
tegrity [24-26]. This is particularly beneficial in noisy
imaging environments or multi-center studies [27].
Wavelet-based features have demonstrated higher repro-
ducibility across scanners and protocols, supporting their
clinical reliability [28, 29].

Wavelet transforms facilitate the extraction of diverse
radiomic features across decomposition levels. Ap-
proximation subbands yield intensity metrics (e.g. mean,
variance) [30], while detail subbands support texture
analysis via GLCM-derived metrics, like contrast and
entropy [31]. Shape features, such as compactness and
eccentricity, are refined through edge detection in detail
components [32, 33]. A typical three-level DWT yields
eight subbands, each offering unique insights into image
structure [14].

Beyond classical DWT and CWT, advanced trans-
forms enhance radiomic performance. The dual-tree
complex wavelet transform (DTCWT) improves di-
rectional selectivity and shift-invariance, aiding feature
extraction in MRI and PET [34]. The TQWT wavelet
transform (TQWT) allows adaptive tuning for modality-
specific tasks, like tumor heterogeneity analysis [12].
These methods address limitations, such as boundary ef-
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fects and noise sensitivity, and are increasingly adopted
in radiomics workflows.

Wavelet-based radiomics has shown promise across
CT, MRI, PET, and ultrasound:

In CT, wavelet features improve classification of he-
patocellular carcinoma [35], enhance pulmonary lesion
grading in COVID-19 [19], and predict treatment re-
sponse in rectal cancer [36].

In MRI, DWT features combined with convolutional
neural network (CNNs) support brain tumor classifica-
tion [37], while 3D wavelet filters aid glioma grading
[38].

In PET, wavelet features enhance biclustering in breast
cancer [39] and enable parametric imaging with im-
proved filtering [40].

In ultrasound, wavelet decomposition differentiates
malignant from benign prostate tissue [41]. These stud-
ies underscore the diagnostic and predictive value of
wavelet integration in radiomics.

Wavelet transforms enrich radiomic analysis by cap-
turing textural and structural characteristics, improving
robustness, and enabling multiscale feature representa-
tion. Their versatility across CT, MRI, and PET imaging
modalities further validates their utility [42]. The follow-
ing sections provide practical guidance for integrating
wavelet transforms into radiomics workflows.

Practical guide to implement wavelet transforms
in radiomics workflows

The application of wavelet transforms into radiomics
workflows needs to be systematic to ensure that ex-
tracted features are interpretable and reproducible. This
section presents a step-by-step guide as to how to apply
wavelet transforms from preprocessing to feature selec-
tion, as well as useful tools and practical examples. By
following these steps, researchers and practitioners can
use the wavelet transforms in radiomics workflow for
various imaging modalities and also address the chal-
lenges of computing large volumes of medical images.
A summary of these steps is represented in Figure 3.
The Haar wavelet, known for its simplicity and blocky
structure, effectively captures abrupt changes and edges.
Daubechies wavelets, characterized by vanishing mo-
ments, are suited for texture analysis and noise reduction,
while Symlets provide a symmetric alternative preserv-
ing signal symmetry. The DWT decomposes images into
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subbands (e.g. LL, LH, HL, and HH) for detailed analy-
sis. Texture features can be extracted using the GLCM, a
statistical method based on pixel intensity relationships.
The IBSI ensures consistent imaging biomarker extrac-
tion. Principal component analysis (PCA) reduces fea-
ture dimensionality while maintaining variance.

Step-by-step process for applying wavelet trans-
forms

Image preprocessing and normalization

Medical imaging preprocessing can be divided into
low-level and high-level techniques. Low-level prepro-
cessing typically involves steps, such as filtering, reg-
istration, normalization, and segmentation to prepare
the raw medical images. In contrast, high-level prepro-
cessing methods, such as wavelet transform models or
empirical mode decomposition techniques, are applied
to further enhance data quality, thereby improving the
accuracy of diagnosis and prognosis.

Selection of wavelet type and decomposition
levels

The choice of wavelet type and decomposition lev-
els is crucial in analysis. Haar is best for sharp edges,
while daubechies (DB) and Symlets suit gradual transi-
tions and textures. The number of levels (usually 14 for
2D images) depends on the desired scale of detail, with
lower levels capturing finer, high-frequency features and
higher levels representing coarser, low-frequency com-
ponents. Image size constrains the maximum number of
levels (e.g. a 256x256 image allows up to 8 levels). Op-
timal selection requires testing different configurations
and validating against reference data.

Application of the wavelet transform and feature
extraction

The preprocessed image, whether 2D (CT/MRI slice)
or 3D (volume), undergoes a DWT to decompose it into
multiple sub-bands. In 2D, DWT produces four sub-
bands (LL, LH, HL, HH), with multilevel decomposition
applied recursively to LL for finer analysis. In 3D, eight
sub-bands are generated (low-low-low [LLL] and seven
detail sub-bands across spatial dimensions), with repeat-
ed decomposition of LLL for multi-resolution analysis.
Feature extraction may use LL or LLL for global inten-
sity metrics, while detail sub-bands (LH/HL/HH in 2D,
and the seven high-frequency components in 3D) pro-
vide rich information for texture analysis (e.g. GLCM,
LBP) and shape descriptors. Features follow standards,
like IBSI for consistency across 2D and 3D analyses.
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Post-processing and feature selection

After feature extraction, the dataset is refined by re-
moving irreproducible features, reducing dimensionality
through methods, like PCA or correlation filtering, and
normalizing data for ML. Irreproducible features refer to
those with low stability across repeated measurements
or high sensitivity to noise, often assessed using metrics,
like ICC or COV. This ensures a reliable, focused feature
set for further analysis.

Software tools and libraries for implementation

The field of wavelet-based radiomics has benefited sig-
nificantly from a growing suite of accessible tools and
software, which streamline workflows for researchers
and clinicians. These platforms facilitate each stage of
the radiomics pipeline, from preprocessing and wavelet
decomposition to feature extraction and post-processing,
thereby broadening access and reducing technical barri-
ers. A brief overview of commonly used tools is shown
in Figure 4.

Python and MATLAB are the most popular platforms
for wavelet-based radiomics. Python is favored for its
open-source libraries (e.g. PyWavelets, PyRadiomics)
and integration with ML, while MATLAB is preferred
for its user-friendly interface and powerful wavelet tool-
box for medical image analysis.

Wavelet transforms are widely implemented in Python
via the PyWavelets library and in MATLAB using the
wavelet toolbox, both providing functions for signal de-
composition and reconstruction, such as wavedec and
waverec. Common wavelet families, including Haar,
Daubechies, and Symlet, can be applied in both environ-
ments, with adjustable filter orders (e.g. dbn with vary-
ing n). These transforms serve diverse applications, like
signal compression, denoising, and feature extraction.
[53-56].

Worked examples with sample datasets

CT (Lung Nodule): Segment a 64x64 ROI from a lung
CT scan (e.g. LIDC-IDRI dataset). Normalize pixel
intensities to [0, 1], apply a 2-level Daubechies (db4)
DWT, and extract GLCM contrast from the HH2 sub-
band (The “2” in “HH2” indicates the second level of
decomposition). The result was an enhanced texture of
nodule boundaries, which aids in the classification of
malignancy [57].
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Remove noise (e.g.,
thresholding, ROI
segmentation)

Image Preprocessing
and Normalization

Choose wavelet type
(e.g., Haar for edges,
Daubechies/Symlets
for textures) based on
image characteristics

Selection of Wavelet
Type and
Decomposition Levels

Apply 2D/3D DWT to
obtain subbands (e.g.,
LL, LH, HL, HH for
2D; LLL, LLH, etc.,
for 3D)

Wavelet Transform and
Feature Extraction

Assess feature
reproducibility with
statistical tests

Post-Processing and
Feature Selection

Figure 3. Steps in radiomics feature extraction and applying wavelet transforms

MRI (brain tumor): Preprocess a 128x128 T2-weight-
ed MRI slice (e.g. BraTS dataset, resampled to 1 mm?
isotropic voxel spacing). Apply a 3-level Symlet (sym4)
DWT, and compute entropy from the LH3 subband. The
result demonstrates improved detection of tumor hetero-
geneity, thereby supporting enhanced segmentation ac-
curacy [58].

PET (tumor standardized uptake value (SUV) Analy-
sis): Normalize a 32x32 ROI from a PET scan slice (e.g.
TCIA dataset). Apply a 1-level Haar DWT, and extract
mean intensity from the LL1 subband. The result enables
the quantification of tumor metabolic activity, facilitat-
ing more accurate lesion characterization [59].

To provide an overview of recent advancements in
wavelet-based techniques for medical imaging, we sum-
marized key studies focusing on their methodologies,
software tools, findings, and limitations. Table 3 pres-
ents a brief comparison of these studies, highlighting
their contributions to applications, such as denoising,
segmentation, classification, and image fusion across
various imaging modalities, including CT, MRI, and ul-
trasound. In order to avoid making the table too long,
these studies were randomly selected from the 62 articles
mentioned in the “Methods” section.
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Normalize pixel
intensities (e.g., [0, 1]
or z-score)

Resample 3D images
to isotropic voxel
spacing (e.g., | mm?®)

Determine
decomposition levels
(1-4 for 2D, max 8 for
256x256 images)
based on feature scale

Validate with a
reference dataset

Extract features (e.g.,
mean, GCLM, shape
per IBSI standards.

Normalize for
integration with
machine learning
models

Reduce dimensionality
using PCA or
correlation filtering

LRI

Tips for optimizing computational efficiency and
managing large datasets

This section provides practical strategies to enhance
computational efficiency and handle large medical im-
aging datasets in wavelet-based radiomics, ensuring
scalable and resource-effective analysis [80].

Key approaches include downsampling large images
(e.g. reducing resolution from 512x512 to 256x256
when fine details are not critical) to balance accuracy
and speed, employing parallel processing in Python or
MATLAB to apply DWT across multiple ROIs or 3D
slices simultaneously, limiting decomposition levels to
3 or 4 to avoid excessive computational burden with di-
minishing returns, managing memory by processing 3D
volumes slice-by-slice and saving subbands to disk in
formats, like HDFS5, and utilizing batch processing with
cloud computing for efficient handling of clinical-scale
datasets.

Following the guideline, practitioners will have a good
chance of implementing wavelet transforms in their ra-
diomics, according to modality and research objective
preferences. It is the mixture of the careful pre-process-
ing, the wise choice of wavelets, and the easy calculation
that produces scientifically strong and clinically action-
able features for more profound interrogation of medical
imaging data. Table 4 provides perspectives pertaining to
the choice of wavelet transforms as refracted by image
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PyWavelets (Python)
* Supports Haar, Daubechies
* Integrates with PyRadiomics; For reproducible

workflows.

MATLAB Wavelet Toolbox

* 1D/2D/3D analysis

* GUI and scripting

* Denoising and feature extraction

ITK

* Open-source for image processing
* Wavelet transforms
 Suited for 3D MRI/CT

3D Slicer

» Extensible platform
* Use with PyWavelets plugins
¢ For medical image analysis

Wavelet Toolbox in R
* Wavelet transforms

* Feature extraction

* Alternative for R users

Custom Implementations
* Personalized pipelines
* GPU acceleration with CUDA

Figure 4. Commonly used computational tools in wavelet-based radiomics [4, 43-52]

characteristics and the kind of radiomics features, based
on ongoing research and practical applications. With
that in mind, the document attempts to provide thorough
guidelines for users, especially those using medical im-
aging and radiomics, to inform their choices. However, it
is not without difficulties, which will be discussed in the
following challenges and considerations section about
realizing these effects.

Challenges and future directions

Wavelet transforms offer significant advantages for
radiomic feature extraction, yet their implementation is
accompanied by challenges that affect quality, reproduc-
ibility, and interpretability. To ensure clinically action-
able and robust wavelet-based radiomics, these chal-
lenges must be addressed systematically. This section
summarizes key constraints and outlines future direc-
tions to overcome them.

pras

Parameter selection: Choosing appropriate wave-
let functions and decomposition levels

Selecting the optimal wavelet function and decom-
position level is inherently complex. Different wavelet
families (e.g. haar, daubechies, symlets) possess distinct
properties, and no single type universally suits all imag-
ing modalities or clinical questions. For instance, Haar
may suit for sharp CT edges but underperform in MRI
transitions. Similarly, decomposition levels must bal-
ance detail capture against noise amplification or reso-
lution limits (e.g. ~6 levels for a 64x64 image). This
selection often relies on empirical judgment, introduc-
ing subjectivity and inter-study variability [73, 86, 87].
To mitigate this, future work should employ data-driven
optimization strategies, such as cross-validation and
phantom-based benchmarking to guide wavelet selec-
tion. Transparent documentation of choices will enhance
reproducibility [1, 88].

Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intelligence):683-704.
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Table 3. Summary of wavelet-based methods in medical imaging
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Software - T
Authors Methodology Key Findings Limitations ~ Summary Outcomes
(Language)
Comprehen-
Extension of CERR 3.5x speedup for sive MAT-
for radiomics: Batch/ Haralick texture Requires LAB-based IBSI-compliant
vectorized feature cal- (32 bins); identi- MATLAB; platform for features: sE erior
Apte et al. culation; IBSI compli- MATLAB (CERR fied errors/differ- scalability reproducible  Sup
: L . o D - speed (3.5x) and
2019 [60] ance; cross-validation platform) ences in feature limits for radiomics with o
- o e . reproducibility for
with ITK/PyRadiomics; definitions; re- very large emphasis on texture analvsis
integration with MIM producible across datasets speed and 4
via MATLAB API packages clinical integra-
tion
Effect of smooth- Small crle e
. - Features variably robustness Identified
ing, sharpening, and . - cohort (18 L -
Bagher- . - . sensitive to noise - ) of radiomics relatively stable
A Gaussian noise on CT/  MATLAB (in-house . patients); . .
Ebadian et al. L . and filtering; some S features toim-  features despite
CBCT radiomics fea- scripts) limited to - .
2017 [61] robust across CT/ age perturba-  noise/smoothing
tures (18 oropharyn- CBCT head/neck 2~ " linical L
ol e weter ) RT tions in clinica variations
g CBCT/pCT
Achieved up to Requires Optimization-
DWT-based denoising +30 dB PSNR q driven wavelet o~
. ) . reference/ . 30 dB PSNR
. with optimal thresh- improvement for - denoising s
Benhassine olding via CSA and Rician noise; out- noise highly effec- gain; improved
etal. 2021 . . MATLAB . model; per- - . SSIM and MSE
SSO; selection of best performed VisuSh- tive for medi-
[62] e - L formance - across mammo-
decomposition level rink, Minimax, and . cal images,
varies by . gram, CT, MRI
and mother wavelet other standard . especially
modality = .
methods Rician noise
Wavelet-based Small sional DWT
(Tawl, T1C, T2WI, jp .
. . model: 98% dataset (91  features cap- Superior clas-
FLAIR) with/without 0 - ) . P .
- . Python accuracy, 99% patients); ture hidden sification (98%
Bijari et al. wavelet transform; L o
= (PyRadiomics, AUC-ROC, 98% F1- manual MRI patterns, accuracy)
2022 [63] 8 ML classifiers (RF, . AP . . .
scikit-learn) score; significantly ~ segmenta-  improving ML  using wavelet-en-
SVM, etc.) for GBM vs o e O o
. e better than non-  tion; single  classification ~ hanced radiomics
MET differentiation; A
wavelet features institution of GBM vs.
manual VOI segmen-
X MET
tation
Multiscale texture mulltzissclglzlfflecgpt}res
features from 3D : Pathology-  3D-WT multi- 93.3% .
wavelet transform of (variance, entropy, specific; scale textures :370 accuracy;
Chaddad et ) MATLAB (wavelet energy); 93.3% ¢ . 88.3% sensitiv-
multispectral patholo- ’ manual seg- effectively Lo
al. 2018 [22] . toolbox) accuracy; entropy : S ity; entropy most
gy slides for CRC grad- - mentation discriminate Y
T = best classifier (AUC ) predictive
ing; ANOVA+random o of regions CRC grades
P up to 100% for
orest :
carcinoma)
Whole-pancreas Manual.seg— Demonstrated
g mentation; -
CT radiomics (478 . o pancreas-wide
Velocity 99.2% accuracy, retrospec- Lo o .
features, 40 selected) ] ) o el L radiomics can  99.2% accuracy in
Chu et al. " (Varian)+not speci-  99.9% AUC; 100% tive; age . . . e
for PDAC vs\normal; : g o . differentiate binary classifica-
2019 [64] fied for feature sensitivity, 98.5% mismatch . ;
Random Forest clas- . Do PDAC without tion
e extraction specificity between .
sification; manual tumor localiza-
- PDAC and .
segmentation tion
controls
3D wavelet radiomic 96.15% accu- Manual ROI DNN with
features+DNN for o segmenta- 3D wavelet
) . . Python (H,0, racy, 100% recall, o . o .
Cinareretal. glioma grading (Grade p Radiomicsz)+3D 98.75% AUC: HHH tion; small  features yields 96.15% accuracy;
2020 [38] Il vs 1lI); feature selec- v . A ’ data- high accu- 98.75% AUC
. : - Slicer filter group most :
tion via Mann-Whit- discriminati set (121 racy for glioma
iscriminative . <
ney U patients) grading
Effect of preprocess-
ing filters (wave_let, Filters improved High P_reprpcess-
LoG, exponential, ing filters
I AUC-ROC up to feature cor- I .
s etc.) on radiomics Python _ . NS (esp. wavelet) Statistically sig-
Demircioglu S L +0.08 (P=0.024); relations; e >
predictive perfor- (PyRadiomics, . enhance nificant AUC gains
2022 [7] N tuning added up to compu- i
mance; 7 datasets; scikit-learn)+R 4 - predictive (up to +0.08)
- +0.1; no perfor- tationally
5 feature selection e intensive performance
methods; 5 classifiers; without harm
nested 10-fold CV
Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intellj €):683-704.




ool of 1acoarch 4
UUuUl 11dil Ul AN D VAL vl

‘?‘ELQI |2 lq

2025. Volume 15. Special Issue: Artificial Intelligence

Software A S
Authors Methodology Key Findings Limitations Summary Outcomes
(Language)
Multidimen-
Survey of multidimen- Reported 50% SNR High com- sional wave-
sional (2D/3D/4D) improvement; gh ¢ lets and tensor
. . S putational : Enhanced SNR
Georgieva et wavelet and tensor ~ Conceptual review Dice ~0.89 for O decomposi- o,
- L cost; lim- o (+50%); segmen-
al. 2021 [65] methods for denois-  -No software used segmentation; ad- . L tions improve ; oo,
< ) - ) ited clinical o tation dice ~0.89
ing, segmentation, vantages in fusion adoption medical image
fusion, compression and denoising P quality and
segmentation
Comparison of Daubechies wave- N m.o.r—. Wavelet Improved
. specific; X
" . wavelet transforms to lets found optimal, transforms segmentation
Hajiabadi et - - wavelet . .
enhance CNN-based Not specified balancing accuracy - improve CNN  performance with
al. 2021 [58] . ; choice ) -
brain tumor segmen- and computational segmentation  optimal wavelet
- depends on .
tation load L accuracy choice
application
32-73% of
Test—re-test repro- features reproduc- Only a subset Intra-observer
ducibility of 1023 ible; GLRLM most  Sensitive to of cardiac reproducibility:
myocardial radiomic stable in cine; segmenta- MRI radiomic  61-73%; inter-ob-
Jang et al. features on cardiac Python first-order & GLCM  tion; repro-  features are server: 32-47%;
2020 [66] MRI (cine bSSFP, T1/ (PyRadiomics) most stable in ducibility reproducible; identifies stable
T2 mapping); ICC T1/T2; gray-level varies by highlights features for myo-
>0.8; inter-/intra- non-uniformity sequence. sequence-spe- cardial phenotyp-
observer analysis. consistently repro- cific stability. ing.
ducible.
Wavelet—'Fran§formed Wavelet model COV.II.D—‘19— Wavelet Impr.oved diag-
CT radiomics for AUC=0.910 vs specific; ret- transformation nostic accuracy
. COVID-19 lesion Python PR rospective (AUC 0.910) and
Jiang et al. i d2 diomi 0.880 original; Iti enhances CT linical utility f
2022 [19] grading; compare 3 (PyRadiomics, decision curve multicenter texture fea- clinical utility for
wavelets; biorl.1 LLL BorutaShap+RF) L dataset; - COVID-19 lesion
. o F showed net clinical . . tures for lesion "
optimal; ML pipeline benefit limited gen- radin severity assess-
with AUC evaluation. ’ eralizability. g g ment.
Wavelet dif-
. - . fusion with
C|rcula_r symrnetnc CNR mproved Dental-spe-  Laplacian mix-  Significant CNR
Laplacian mixture dramatically (e.g. cific; model  ture improves ains across
Kafieh et al. model in wavelet MATLAB (re- AP:2.91->38.88; ! P gains o
P . complex- dental image modalities; cavi-
2012 [67] diffusion for dental ported) cephal-lateral: L L . - A
- s . ity; limited denoising ties retained in
image denoising; 41.61->86.31); ; : .
h P datasets. while preserv-  filtered images.
evaluated with CNR. preserved cavities. . . .
ing diagnostic
details.
Hybrid Achieved state-of-  Limited to Hy::ld;;?/z?n-
radiomics+stationary the-art classifica-  BraTS data- Iet—ra diomics Accuracy 97.54%,
Kumar et al. wavelet features for Pvthon tion; features set; binary i gy AUC 97.48% for
2020(68]  glioma grading (BraTS Y fromthree ROIs ~ HGGvsLGG PP HGG/LGG clas-
. - e curately clas- e
2018); Random Forest improved discrimi-  classifica- sifies alioma sification.
with 5-fold CV. nation. tion. &
grades.
Pre-treatment CT - CT radiomics
s . Radiomic features Retro- )
radiomics to predict s provides - .
. (esp. wavelet spective; ; AUC ~0.70 (train-
3-year OS in esopha- In-house devel- ) prognostic ) - -
Larue et al. S textures) predicted esophageal- . ) ing), ~0.61 (vali-
geal cancer after oped radiomics . -~ o information >
2018 [69] - . 0S; AUC ~0.69 specific; S dation) for 3-year
chemoradiotherapy; toolbox o ; for survival in -
- training, 0.61 possible OS prediction.
RF models with fea- Lo . esophageal
S validation. overfitting.
ture elimination. cancer.
4DCT can -
Leie 2IDEV s 56% unfiltered . substitute ST
as surrogate for o Respira- features robust
and 33% wavelet . test-retest )
test—re-test to assess : tory motion = in esophageal
S - features stable in SRR for stability )
Larue et al. radiomics stability In-house devel- ADCT: 38% robust variability; assessment: cancer; stable
2017 [70] (1045 features); CCC oped software . g SXXA) thoracic ! features identi-
8 ) in esophageal can- robustness -
>0.85; Cox regression A cancers . fied across NSCLC
f A cer; 108 features independent
or prognostic cor- rognostic only. of prognostic and esophageal
relation. prog ’ pvaﬁl o datasets.

Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intelligence):683-704.




. Volume 15. Special Issue: Artificial Intelligence

Toanal of Racoarch £ Haoa)
JAVACVWIT I GV G ANV 7 79V } ALvell

Software i P
Authors Methodology Key Findings Limitations Summary Outcomes
(Language)
CT-based 3D ra- 11 features signifi- Retrospec-
diomics (219 features, Definiens d | '8 d tive; Asian CT radiomics . d
. 59 independent) from etiniens ge- cantly associate cohort; adds predic- AUC improve
Liu et al. lung adenocarcinoma: veloper XD+Not with EGFR muta- sur icali tive power for to 0.709 with
2016 [39] § aoe ) 7 specified for fea- tion; combined sically P . radiomics+clinical
logistic regression ture extraction model AUC=0.709 resected EGFR mutation features
for EGFR mutation vs 0.667 cIi_ni.caI tumors status. ’
prediction. ’ ’ only.
CADXx system
Wavelet (Daubechies Accuracy 82%; No seg- using wavelet
Moshantat et db1, db2, db4) fea- sensitivity 90.9%; mentatigon descriptors 82% precision;
al. 2015 [71] ture descriptors from MATLAB specificity 73.9%; —— and SVM 90.9% sensitivity;
’ lung CT ROIs; SVM detected nodules dagta;sets classifies lung  73.9% specificity.
classifier. 2-30 mm. : nodules ef-
fectively.
DWT fusion
DWT-based fusion Biorthogonal/re- improves
of CT and MRI using verse biorthogonal - multimodal .
. - Limited to L Best results with
Mukhopad- multiple wavelets wavelets yielded ) medical im- . .
: : CT/MRI; no oo rbio3.1: Entropy
hyay et al. (haar, db, sym, coif, MATLAB highest entropy ) age quality;
- X ML integra- 5.76, PSNR 21.7
2019 [72] bior, rbio, dmey); and SNR; fused tion performance dB. SNR 10.26
evaluated with PSNR, images improved ’ depends ! o
SNR, entropy. clarity. on wavelet
choice.
CADx system
Wavelet (Daubechies Accuracy 82%; No seg- using wavelet
Madero db1, db2, db4) fea- sensitivity 90.9%; mentatigon descriptors 82% precision;
Orozcoetal.  ture descriptors from MATLAB specificity 73.9%; WN—— and SVM 90.9% sensitivity;
2015 [57] lung CT ROIs; SVM detected nodules dagta;sets classifies lung  73.9% specificity.
classifier. 2-30 mm. ’ nodules ef-
fectively.
. Provides
Optimal levels . S
A . - . High com- guidelines Improved spec-
Estimation of optimal increase with - - s
o ) . putational for selecting tral fidelity and
Pradhan et decomposition levels Not specified resolution ratio; cost for decomposi- spatial qualit
al. 2006 [73]  in SIDWT for MS—PAN P balance between . lecompos! opatial quatity
- ] - excessive tion levels in with appropriate
image fusion spatial and spec- level Iti level selecti
tral fidelity evels multisensor evel selection
fusion
Radiomic features Bior1.5, Coif1, Demonstrates
from multiple wavelet Haar, Sym2 kernels  Limited to kernel choice Enhanced prog-
Prinzi et al. kernels; ML models Not specified performed best; CoviD19 significantly nosis prediction;
2023 [45] (RF, SVM, XGB) for p RF most stable and CXR impacts ra- RF achieved
COVID19 prognosis with balanced sen-  modality diomic predic- robust balance
on CXR sitivity/specificity tive power
Compu-
3D DWT for denoising Effective denois- tationally Introduces
and reconstruction of L intensive; 3D DWT for Improved PSNR
Prochdzkaet  biomedical volumes ing; improved perfor- volumetric and visual quality;
R . MATLAB (likely) PSNR and MSE; . L . Y
al. 2011 [74] (MRI); thresholding L mance biomedical im-  emphasized spi-
better visualization
and wavelet com- dependson  age enhance-  nal components
- of vertebrae
parison wavelet and ment
noise type
_— Restricted . . .
from plan CT for HCC MWCsCOMfea-  toplain  CBERTR e SR
Qiu et al. p S . tures superior; lin-  CT; avoids pa ey . v;
vs HH classification; Python (likely) ; - spired MWCS interpretable
2022 [75] R . ear SVM achieved  contrastin- -
ML pipelines with - features for CT  features linked to
. AUC=0.8734 duced A
feature selection oyt radiomics pathology
DEWT with bivariate BiLapGausMAP Assump- Adaptive
aplacian mixture best for CT; tions on denoisin Superior SNR
Rabbani et al priors; Gaussian/ BiLa GausMMSE distribu- usin bivarigate enl?ancement
2009 ’ Rayleigh noise Not specified p? . tions; EM ng . . A
[26] . for highSNR CT; mixture priors  while preserving
models; MAP/MMSE BiLapRayMAP for compu- in wavelet details
estimators; local EM | pRay tationally -
o owSNR MR domain
parameter estimation heavy
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Software - T
Authors Methodology e Key Findings Limitations Summary Outcomes
Complex wavelet Adaptive
transform; Gaussian/ Outperformed Model as- des epcklin Sionificant speck-
. Laplacian mixture pri- stateoftheart sumptions; especkiing g p
Rabbani et al. . . . using mixture le suppression
ors; MAP/MMSE esti- Not specified despeckling; pre- focused Lo .
2008 [25] . priors in com- with preserved
mators for ultrasound served anatomical  on speckle .
. - : plex wavelet details
speckle reduction; boundaries noise only domain
local EM
Limited to . o .
Sarhan 2020 exli\r/;/!-tifgﬁ?l]\ﬂ\]lrlsor sl Cesn i C\?/;nvtglr;is 95;-2:: acclitsjig::ca-
. e Not specified accuracy; outper- no seg- . ¥
[37] brain tumor classifica- ; features with across three
A formed SVM mentation
tion in MRI required CNN for CAD tumor types
F1W?2 algorithm: Frac- 90.9% mass Hvbrid
tal segmentation+db2 detection; 88.99% Datasetspe- fractaﬁwavelet High detection
Shirazinodeh wavelet Not specified microcalcification  cific; com- avoroach for andgclassification
etal. 2015[6] decomposition+RBF P detection; 92% putationally bpp
h . : reast cancer accuracy
neural network for benign/malignant  demanding CAD
mammogram analysis classification
Wavelet decomposi- L
tionbased radiomic Lz
Symlet 5 and to NSCLC Introduces RI Improved
- features from CT of ! A - -
Soufi et al. - . Biorthogonal cohort; for optimal prognostic
lung cancer patients; MATLAB NG .
2018 [76] Coxnet and MCPHR 2.6 optimal; Cin- dependent  wavelet selec- performance with
. dex=0.62-0.68 on wavelet tion selected wavelets
models for survival choice
prediction
. Compu- Combines
VDRnet trained 9n Outpe!’formed tationally deep residual  Higher PSNR and
suryana- SWT subbands; competingmeth- .\ cile. learning with  improved visual
rayanaetal.  Gaussian edgepreser- MATLAB ods in PSNR, SSIM, dali ! 8 d fid pl .
2021 [77] vation for MR ima d subjecti moaality- SWTan idelity in MR su-
ge and subjective . G lut
superresolution quality specific to aussian perresolution
MRI filtering
Combining wave-
let + original CT Multiphase
Wavelet radiomics features signifi- Lim- CT wavelet
features from mul- cantly improved ited trainin radiomics with
tiphase CT for HCC classification; logis- samples: g sparsity-based ~ AUC ~0.85-0.90,
Tang et al. vs. non-HCC; logistic Pvthon. 3D Slicer tic sparsity model s eci?ic té) selection comparable to
2023 [35] sparsity-based feature Y ’ outperformed hz atic le- enhances HCC  CNNs under data
selection with Bayes- filter/wrapper nep . classification scarcity.
. e . sions; single
ian optimization; methods; perfor- dataset compared to
compared with CNNs. mance compara- ’ conventional
ble to CNNs under methods.
limited data.
High test-re- Wavelet-based
. test reliability; voxel-wise
Voxel-wise morpho- ducible hub . hological
logical connectivity reproducible hu Anatomi- morphologica High ICC (>0.7);
: structures (precu- cal MRI networks pro- . L
using wavelet trans- - . - : consistent hubs
Wang et al. . neus, cingulate, only; small vide reliable Lo
form of VBM; test— MATLAB X i across sessions;
2018 [3] retest reliability; hub hippocampus); healthy connectome reflects individual
detection via d»:e’ ree group-level stable, cohort mapping differences
centralit g individual-level (n=21). and capture ’
V- sensitive to scale/ individual vari-
threshold. ability.
o 33 reference
IBSI standardization of . ;
S conouion) et et s Nowonen SO e
(mean, LoG, Laws, . ‘ sus for Riesz . " /0 rEp
Gl sl Multi-software reference feature transformes: tional filters ibility across
Whybra et al. non-separable wave- (Pythqn, ITK, values; 458/486 validation .for rep.rodl{c—. ‘ CT, PET, MR];
2024 [4] | S PyRadiomics, features reproduc- L ible radiomics;  improves clinical
ets, Riesz); digital - limited to . e
CERR, LIFEx, etc.) ible (ICC lower compliance- reliability of ra-
phantoms, chest CT, 51 sarcoma X T
- ; bound >0.75) . checkingweb  diomics pipelines.
multimodal valida- patients. -
tion across 9 teams and tool available.
’ 3 modalities.
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(Language)
23.7% of WD
Rotation effects features signifi- Lesion orienta-
on wavelet-based cantly correlated Retrospec- tion strongly WD features
radiomics in NSCLC Pvthon with rotation vs. tive: NSCLC impacts unstable (23.7%
Wong et al. CT; random rotations (P R;Idiomics 0.5% of non-WD; c;nl ) reproducibil-  affected); model
2025 [78] (5—-80°); Spearman’s yRac ’ WD-based models _onty; ity of wavelet  accuracy dropped
SciPy) simulated R o B
test for feature showed accuracy rotations radiomics with increasing
stability and model decline with rota- ’ features and rotation.
accuracy. tion (CC=-0.44, models.
P<0.001).
Improved clas- Limited
e o 3D DWT lever-
3D DWT for land- S|f|cat|c_m accuracy,  to “emt,e ages spatial+ Accuracy gains:
o especially in SAR sensing
cover classification (97.7% vs 60.2% com u-’ spectral info Landsat (68.6%
Yoo et. al. of optical and SAR MATLAB (haar ori {na‘l’)' redl:lce‘a tationpall for superior s 68.2%), Ikonos
2007 [43] images; compared wavelet) sgeckl:a noise: intensivg‘ classification  (86.1% vs 77.0%),
with pixel-based and zﬁective for' sinale- ! of multispec- SAR (97.7% vs
2D DWT. | X 8 tral and SAR 60.2%).
high-resolution sensor —
imagery. datasets. ges.
Wavelet-transformed
L Wavelet-
radiomic features Wavelet textures
. transformed
from CE-MRI for alone achieved Retrospec- L
predicting pCR to NAC highest AUC tive; small MRI radiomics AUC up to
7h ] 3DAQl platform ) ) ¢ predicts NAC 0.888 for pCR
ou etal. in locally advanced (Python/MATLAB (0.888); adding cohort response prediction using
2020 [79] breast cancer; six RF backend) volumetric/pe- (n=55); more ac- wavelet-onl
models combining ripheral features single insti- curately than models v
volumetric, periph- did not improve tution. Y )
non-wavelet
eral, and wavelet performance.
textures. features.
neras)

Abbreviation: CSA: Crow search algorithm; SSO: Social spider optimization; DNN: Deep neural network; DWT: Discrete
wavelet transform; RA: Ranking index; 3D DWT: 3D discrete wavelet transform; VDRnet:Very deep residual network; MWCS:
Maximum waveletcoefficient statistics; CADx: Computer-aided diagnosis; CNR: Contrast-to-noise ratio; CXR: Chest X-ray;
DCWT: Dual-tree complex wavelet transform; FIW2: Fractal and wavelet combined algorithm; HCC: Hepatocellular carcino-
ma; Rbio: Reverse biorthogonal; SIDWT: Shift-invariant discrete wavelet transform; SSIM: Structural similarity index measure;

XGB: XGBoost.

Trade-offs between computational complexity
and feature quality

Deep wavelet decompositions and complex wavelet
designs increase computational demands, especially
for large images or 3D volumes. While higher levels
and sophisticated wavelets (e.g. Daubechies with more
vanishing moments) may improve granularity, they risk
diminishing returns if biological relevance does not scale
accordingly. Simplified configurations reduce resource
usage but may compromise feature quality [45, 87].
Future implementations should prioritize efficient con-
figurations—e.g. limiting decomposition to 3—4 levels,
downsampling inputs, and leveraging parallel process-
ing or GPU acceleration (e.g. PyWavelets, MATLAB
toolbox)—to balance quality and feasibility [89].

Khanbabaei H, et al. Wavelet transforms in Radiomic Feature Extraction from Medical Images. JRH. 2025; 15(Special Issue: Artificial Intellj

Standardization issues across institutions and im-
aging protocols

Wavelet-based radiomics suffers from poor standard-
ization across imaging setups. Variations in scanner
types, voxel sizes, and contrast settings alter signal char-
acteristics, leading to inconsistent wavelet decomposi-
tions. Without standardized preprocessing or wavelet
parameters, features from identical tissues may differ
significantly between institutions, hindering multicenter
studies and clinical translation [88, 90]. Future efforts
should adopt established preprocessing standards (e.g.
IBSI), report wavelet parameters explicitly, and promote
inter-institutional consensus protocols. Incorporating
wavelet settings into broader radiomics standardization
frameworks is also recommended [88, 91].

Limitations of wavelet transforms

Wavelet transforms are prone to boundary effects due
to image padding, which distorts subband values near
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Table 4. Practical guideline based on image characteristics and feature types [7, 17, 38, 81-85]

i Type of Fea- Recommended .
Image Characteristic P Rationale
ture Wavelet
High contrast, sharp edges (CT, Texture db2". dba Captures edges effectively, with db2 for sharp disconti-
T1 MRI) (edges) ¢ nuities and db4 for balance.
Smooth transitions (T2 MRI) Texture dba, dbs, coif1’ Handles smooth |nten§|ty varlat.lons, with higher mo-
(smooth) ments for finer detail capture.
Low resolution, noise-prone Any db, db8, coif2 Suppresses noise, with more vanls.hlng moments for bet-
(PET) ter noise handling.
Fine textures Texture dbs, dbs More vanishing moments capture hlgh—frequency details
for heterogeneous regions.
Coarse textures Texture db2, db4 Fewer vanishing moments focus on low-frequency pat-
terns for larger, smoother areas.
Noisy images Any db, db8, coif2 Higher-order wavelets reduce noise impact, improving

feature reliability.

*dbN : Daubechies wavelets of order N; fcoifN : Coiflet wavelets of order N.

edges—especially problematic for small ROIs, like ear-
ly tumors. Additionally, feature interpretability remains
limited; linking subband metrics (e.g. HH3 entropy) to
biological phenomena is often unclear. Over-decompo-
sition in low-signal-to-noise ratio (SNR) modalities (e.g.
PET) may further compromise reliability [88, 90]. Fu-
ture works should apply boundary-handling techniques
(e.g. symmetric padding, ROI cropping), correlate wave-
let features with histological or clinical outcomes to en-
hance interpretability, and utilize noise-robust wavelets
(e.g. Coiflets) for noisy data [85, 92].

Robustness testing and validation

Without rigorous testing, wavelet-derived features may
lack robustness across scanners, protocols, and pertur-
bations [93]. All features should undergo robustness
evaluation using metrics, like intraclass correlation co-
efficient. Unstable features should be excluded early in
the pipeline to ensure statistical reliability and clinical
relevance [73, 87].

Discussion

This systematic review synthesized evidence from
62 studies on the application of wavelet transforms in
radiomic feature extraction from medical images, par-
ticularly CT, MRI, and PET modalities. Our analysis
revealed that wavelet-based approaches consistently en-
hance the robustness and reproducibility of radiomic fea-
tures, and partly overcome key challenges in radiomics,
such as noise sensitivity, imaging artifacts, and protocol
variability. By decomposing images into multiscale fre-
quency components—Ilow-frequency approximations
for structural integrity and high-frequency details for
textural nuances—wavelets enable the isolation of bio-

Lzl

logically relevant patterns that traditional preprocessing
methods, like Gaussian smoothing or Fourier transforms,
often overlook. This multiresolution analysis not only
minimizes irrelevant variance but also preserves spatial
localization, making it particularly valuable for oncol-
ogy applications, including tumor grading, survival pre-
diction, and treatment response assessment.

Key findings and trends in wavelet applications

The reviewed studies demonstrate wavelet transforms’
versatility across diverse clinical scenarios. DWT, in-
cluding 2D and 3D variants, were the most prevalent
(appearing in ~70% of studies), excelling in tasks, like
denoising (e.g. Rician noise reduction with up to +30
dB peak signal-to-noise ratio [PSNR] gains [62]) and
feature enhancement for ML classification (e.g. 98%
accuracy in glioma grading using wavelet-augmented
random forests [RF] [63]). Advanced variants, such
as stationary wavelet transforms (SWT) and DTCWT,
further improved shift-invariance and reduced aliasing
artifacts, yielding superior performance in fusion tasks
(e.g. CT-MRI integration with entropy gains up to 5.76
[71]) and prognostic modeling (e.g. C-index 0.62—0.68
for NSCLC survival [76]).

Figure 5 shows publication trends that indicate a
steady rise in wavelet-radiomics research, from 1-2 ar-
ticles annually pre-2015 to a peak of 5 in 2020, reflect-
ing growing interest amid the radiomics boom and the
COVID-19-driven demand for robust imaging analytics
(e.g. lesion severity grading with AUC 0.910 [19]). Post-
2020, the trajectory stabilized at 2—4 publications per
year, possibly due to saturation in core applications and a
shift toward integration with DL. This temporal distribu-
tion underscores wavelets’ evolution from foundational
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Figure 5. Annual publication trends in wavelet-radiomics

denoising tools (early 2000s) to integral components of
hybrid ML pipelines, with over 80% of recent studies
(2020-2025) combining them with classifiers like RF or
support vector machines (SVM).

I 1

Software adoption patterns highlight MATLAB’s dom-
inance (13 studies), likely due to its wavelet toolbox for
rapid prototyping and IBSI-compliant implementations
(e.g. 3.5% speedup in Haralick textures [60]). Python,
with libraries, like PyRadiomics and scikit-learn (10
studies), emerged as a close second, favored for scalabil-

Frequency

EMATLAB ®Python ®Others (3D Slicer, R, ...) Not specified

naz

Figure 6. Pie chart summarizing frequencies of software tools mentioned, illustrating MATLAB and Python’s prevalence

alongside gaps in specification
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ity and open-source ML integration (e.g. 99.2% accura-
cy in PDAC detection [64]). The equal share of “others”
(e.g. 3D Slicer, R; 10 studies) and unspecified tools (8
studies) points to a fragmented ecosystem, emphasizing
the need for standardized pipelines to ensure reproduc-
ibility. Figure 6 shows the pie chart summary based on
these 36 articles, illustrating this distribution and under-
scoring Python’s emerging preference for open-source
workflows in radiomics, balanced against MATLAB’s
established clinical validation strengths.

Quantitative outcomes across studies were compelling:
wavelet-enhanced models achieved median AUC-ROC
values of 0.85-0.98 for classification tasks (e.g. GBM
vs. MET differentiation [63]) and 0.70-0.89 for prog-
nostication (e.g. pCR prediction in breast cancer [79]).
Reproducibility metrics, such as ICC >0.75, were report-
ed in 40% of studies, with wavelet filters outperforming
non-wavelet baselines by 20—50% in stability (e.g. 73%
reproducible features in cardiac MRI [66]). These gains
were modality-agnostic, though CT dominated (55% of
studies), followed by MRI (30%) and PET (15%), align-
ing with CT’s prevalence in oncology workflows.

Strengths and comparative advantages

Wavelets surpass classical methods, like short-time
Fourier transforms or empirical mode decomposition
in most scenarios by providing scale-dependent, local-
ized decompositions that capture heterogeneous tumor
microenvironments without excessive smoothing. For
instance, while Fourier methods excel in global fre-
quency analysis, they lack spatial resolution, leading to
feature dilution in noisy datasets—a limitation mitigated
by wavelets’ subband thresholding (e.g. +50% SNR in
multidimensional denoising [65]). Integration with ML/
DL amplified these benefits: hybrid models (e.g. wave-
let-CNNss) achieved 96-99% accuracies in segmentation
and classification [37, 38], outperforming standalone DL
by 5-10% under data scarcity.

Compared to prior reviews (Table 1), this work unique-
ly bridges theoretical wavelet foundations (e.g. mother
wavelet selection, like Daubechies or Biorthogonal)
with radiomics-specific implementations, filling a gap
in modality-focused syntheses. Unlike signal-centric
reviews (e.g. ECG compression [10]), we emphasized
imaging applications, where wavelets’ edge-preserving
properties (e.g. cavity retention in dental denoising [67])
directly translate to clinical utility.
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Limitations and challenges

Despite these advances, several limitations persist.
Computational intensity remains a barrier: 3D/4D de-
compositions demand high resources, limiting scalabili-
ty for large cohorts (e.g. noted in 25% of studies [65, 73].
Parameter tuning—decomposition levels, wavelet fami-
lies, and thresholding—varies widely, with suboptimal
choices reducing reproducibility (e.g. rotation sensitivity
in 23.7% of wavelet features [78]). Small, retrospective
cohorts (median n=55-121) and single-institution data
(80% of studies) raise generalizability concerns, while
manual segmentations introduce observer bias [63, 64].

Heterogeneity in noise models (Gaussian vs Rician)
and lack of IBSI standardization across tools further
complicates comparisons, as evidenced by discrepancies
in feature definitions [60]. Alternatives, like empirical
mode decomposition may outperform in non-stationary
signals (e.g. dynamic PET), but wavelets’ structured
framework makes them more amenable to automated
pipelines.

Implications for clinical practice and future
directions

Wavelet-radiomics holds transformative potential for
precision medicine, enabling non-invasive, quantitative
phenotyping that informs personalized therapies (e.g.
EGFR mutation prediction with AUC 0.709 [94]). By
enhancing feature stability, it could standardize multi-
institutional trials, reducing protocol-induced variances
and accelerating biomarker discovery.

Future research should prioritize: 1) prospective, mul-
ticenter validations with diverse cohorts; 2) automated
hyperparameter optimization via genetic algorithms or
Bayesian methods to mitigate selection biases; 3) deeper
DL synergies, such as wavelet-embedded CNNss for end-
to-end pipelines; and 4) IBSI-compliant benchmarks for
filter standardization e.g. expanding framework 4). De-
veloping lightweight, cloud-based tools could democra-
tize access, bridging the MATLAB-Python divide.

In conclusion, wavelet transforms represent a corner-
stone for robust radiomics, offering a mathematically
grounded yet practically viable pathway to overcome
imaging heterogeneity. This review’s framework—en-
compassing workflows, challenges, and optimizations—
equips researchers and clinicians to harness these tools
for enhanced diagnostic and prognostic accuracy, ulti-
mately advancing patient-centered care.
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Conclusion

This systematic review confirms that wavelet trans-
forms are a transformative approach to extracting ra-
diomic features, leveraging their mathematical founda-
tion in multiresolution analysis to decompose medical
images into multiscale representations with exceptional
accuracy. The most important findings show that wave-
let-based methods, especially the DWT and advanced
techniques, such as the DTCWT, enhance the detection
of morphological and histological features, improve the
reproducibility of features in CT, MRI, and PET modali-
ties, and reduce the sensitivity to noise, thereby enhanc-
ing the quality and biological relevance of radiomic
analyses. These capabilities have been demonstrated by
their successful application in predicting complete path-
ological response to neoadjuvant chemotherapy in breast
cancer and in stratifying hepatocellular carcinoma using
MRI. However, challenges, such as parameter selection,
computational complexity, and lack of standardized pro-
tocols remain significant obstacles that require robust
implementation strategies and adherence to frameworks,
such as the IBSI. Looking ahead, integrating wavelet-
derived features with ML and DL holds promise for im-
proving diagnostic accuracy and prognostic modeling,
while multimodal approaches that combine radiomics
with genomic data could provide deeper insights into dis-
ease mechanisms. Emerging applications, such as real-
time intraoperative guidance and longitudinal treatment
monitoring, highlight the potential of wavelet transforms
for advancing precision medicine. To fully realize this
potential, future efforts should prioritize interdisciplin-
ary collaboration, validation across diverse datasets, and
expansion of standardization initiatives. By addressing
these gaps, wavelet-based radiomics can become a more
accurate and impactful tool, bridging the gap between
theoretical advances and clinical application to improve
patient outcomes.

Future research should prioritize the development of
hybrid approaches that integrate wavelet transforms with
ML or DL to address limitations in interpretability and
computational demands, the advancement of multimod-
al integration by combining wavelet-based radiomics
with functional imaging techniques, such as PET and
fMRI or with genomic and proteomic data to offer a
comprehensive understanding of disease processes,
and the promotion of standardization and collaboration
through interdisciplinary efforts among researchers, cli-
nicians, and industry to establish standardized protocols
and open-access databases; as a result, wavelet-based
radiomics emerges as a promising frontier in medical
imaging, enabling advanced quantitative analysis of im-
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ages, and addressing current challenges while enhancing
interdisciplinary collaboration will significantly contrib-
ute to improving patient care and outcomes.
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